Navigation


source: freeDiameter/include/freeDiameter/libfdproto.h

Last change on this file was 1554:566bb46cc73f, checked in by Sebastien Decugis <sdecugis@freediameter.net>, 5 months ago

Updated copyright information

File size: 125.5 KB
Line 
1/*********************************************************************************************************
2* Software License Agreement (BSD License)                                                               *
3* Author: Sebastien Decugis <sdecugis@freediameter.net>                                                  *
4*                                                                                                        *
5* Copyright (c) 2020, WIDE Project and NICT                                                              *
6* All rights reserved.                                                                                   *
7*                                                                                                        *
8* Redistribution and use of this software in source and binary forms, with or without modification, are  *
9* permitted provided that the following conditions are met:                                              *
10*                                                                                                        *
11* * Redistributions of source code must retain the above                                                 *
12*   copyright notice, this list of conditions and the                                                    *
13*   following disclaimer.                                                                                *
14*                                                                                                        *
15* * Redistributions in binary form must reproduce the above                                              *
16*   copyright notice, this list of conditions and the                                                    *
17*   following disclaimer in the documentation and/or other                                               *
18*   materials provided with the distribution.                                                            *
19*                                                                                                        *
20* * Neither the name of the WIDE Project or NICT nor the                                                 *
21*   names of its contributors may be used to endorse or                                                  *
22*   promote products derived from this software without                                                  *
23*   specific prior written permission of WIDE Project and                                                *
24*   NICT.                                                                                                *
25*                                                                                                        *
26* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED *
27* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
28* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR *
29* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT     *
30* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS    *
31* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
32* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY S_OUT OF THE USE OF THIS SOFTWARE, EVEN IF *
33* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                                                             *
34*********************************************************************************************************/
35
36/* This file contains the definitions of functions and types used by the libfreeDiameter library.
37 *
38 * This library is meant to be used by both the freeDiameter daemon and its extensions.
39 * It provides the tools to manipulate Diameter messages and related data.
40 * This file should always be included as #include <freeDiameter/libfreeDiameter.h>
41 *
42 * If any change is made to this file, you must increment the FD_PROJECT_VERSION_API version.
43 *
44 * The file contains the following parts:
45 *      DEBUG
46 *      MACROS
47 *      OCTET STRINGS
48 *      THREADS
49 *      LISTS
50 *      DICTIONARY
51 *      SESSIONS
52 *      MESSAGES
53 *      DISPATCH
54 *      QUEUES
55 */
56
57#ifndef _LIBFDPROTO_H
58#define _LIBFDPROTO_H
59
60#ifdef __cplusplus
61extern "C" {
62#endif
63
64#ifndef FD_IS_CONFIG
65#error "You must include 'freeDiameter-host.h' before this file."
66#endif /* FD_IS_CONFIG */
67
68#include <pthread.h>
69#include <sched.h>
70#include <string.h>
71#include <assert.h>
72#include <errno.h>
73#include <netinet/in.h>
74#include <arpa/inet.h>
75#include <sys/socket.h>
76#include <netdb.h>
77#include <stdio.h>
78#include <stdlib.h>
79#include <unistd.h>
80#include <stdarg.h>
81
82#include <libgen.h>     /* for basename */
83
84#ifdef SWIG
85#define _ATTRIBUTE_PRINTFLIKE_(_f,_v)
86#else
87#define _ATTRIBUTE_PRINTFLIKE_(_f,_v) __attribute__ ((format (printf, _f, _v)))
88#endif /* SWIG */
89
90/* Remove some deprecated warnings from some gnutls versions, when possible */
91#if defined(__GNUC__)
92# define GCC_DIAG_DO_PRAGMA(x) _Pragma (#x)
93# define GCC_DIAG_PRAGMA(x) GCC_DIAG_DO_PRAGMA(GCC diagnostic x)
94# if ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406         /* 4.6.x */
95#  define GCC_DIAG_OFF(x) GCC_DIAG_PRAGMA(push) \
96     GCC_DIAG_PRAGMA(ignored x)
97#  define GCC_DIAG_ON(x) GCC_DIAG_PRAGMA(pop)
98# else                                                  /* older */
99#  define GCC_DIAG_OFF(x) GCC_DIAG_PRAGMA(ignored x)
100#  define GCC_DIAG_ON(x)  GCC_DIAG_PRAGMA(warning x)
101# endif
102#else
103# define GCC_DIAG_OFF(x)
104# define GCC_DIAG_ON(x)
105#endif
106
107/*============================================================*/
108/*                       CONSTANTS                            */
109/*============================================================*/
110
111#define DIAMETER_PORT           3868
112#define DIAMETER_SECURE_PORT    5868
113
114
115/*============================================================*/
116/*                          INIT                              */
117/*============================================================*/
118
119/* This function must be called first, before any call to another library function */
120int fd_libproto_init(void); /* note if you are using libfdcore, it handles this already */
121
122/* Call this one when the application terminates, to destroy internal threads */
123void fd_libproto_fini(void);
124
125/* Retrieve the version of the binary */
126extern const char fd_libproto_version[];
127
128/*============================================================*/
129/*                          DEBUG                             */
130/*============================================================*/
131
132
133/*
134 * FUNCTION:    fd_log
135 *
136 * PARAMETERS:
137 *  loglevel    : Integer, how important the message is. Valid values are macros FD_LOG_*
138 *  format      : Same format string as in the printf function
139 *  ...         : Same list as printf
140 *
141 * DESCRIPTION:
142 * Write information to log.
143 * The format and arguments may contain UTF-8 encoded data. The
144 * output medium is expected to support this encoding.
145 *
146 * RETURN VALUE:
147 *  None.
148 */
149void fd_log ( int, const char *, ... ) _ATTRIBUTE_PRINTFLIKE_(2,3);
150#ifndef SWIG
151void fd_log_va( int, const char *, va_list);
152#endif /* SWIG */
153
154/* these are internal objects of the debug facility,
155might be useful to control the behavior from outside */
156extern pthread_mutex_t  fd_log_lock;
157extern char * fd_debug_one_function;
158extern char * fd_debug_one_file;
159
160/*
161 * FUNCTION:    fd_log_threadname
162 *
163 * PARAMETERS:
164 *  name        : \0-terminated string containing a name to identify the current thread.
165 *
166 * DESCRIPTION:
167 *  Name the current thread, useful for debugging multi-threaded problems.
168 *
169 * This function assumes that a global thread-specific key called "fd_log_thname" exists
170 * in the address space of the current process.
171 *
172 * RETURN VALUE:
173 *  None.
174 */
175void fd_log_threadname ( const char * name );
176extern pthread_key_t    fd_log_thname;
177
178/*
179 * FUNCTION:    fd_log_time
180 *
181 * PARAMETERS:
182 *  ts          : The timestamp to log, or NULL for "now"
183 *  buf         : An array where the time must be stored
184 *  len         : size of the buffer
185 *  incl_date   : The day of year is included in the output
186 *  incl_ms     : millisecond value is included in the output
187 *
188 * DESCRIPTION:
189 *  Writes the timestamp (in human readable format) in a buffer.
190 *
191 * RETURN VALUE:
192 *  pointer to buf.
193 */
194char * fd_log_time ( struct timespec * ts, char * buf, size_t len, int incl_date, int incl_ms );
195
196/*
197 * FUNCTION:    fd_log_handler_register
198 * MACRO:
199 *
200 * PARAMETERS:
201 *  loglevel    : priority of the message
202 *  format      : Same format string as in the printf function
203 *  va_list     : Argument list
204 *
205 * DESCRIPTION:
206 * Register an external method for logging purposes.
207 *
208 * RETURN VALUE:
209 * int          : Success or failure
210 */
211int fd_log_handler_register ( void (*logger)(int loglevel, const char * format, va_list args) );
212
213/*
214 * FUNCTION:    fd_log_handler_unregister
215 * MACRO:
216 *
217 * PARAMETERS:
218 *
219 * DESCRIPTION:
220 * Unregister the external logging function.
221 *
222 * RETURN VALUE:
223 * int          : Success or failure
224 */
225int fd_log_handler_unregister ( void );
226
227
228/* All dump functions follow this same prototype:
229 * PARAMETERS:
230 *   buf   : *buf can be NULL on entry, it will be malloc'd. Otherwise it is realloc'd if needed.
231 *   len   : the current size of the buffer (in/out)
232 *   offset: (optional) if provided, starts writing dump at offset in the buffer, and updated upon exit. if NULL, starts at offset O.
233 *
234 * RETURN VALUE:
235 *   *buf upon success, NULL upon failure.
236 *
237 * REMARKS:
238 *  - After the buffer has been used, it should be freed.
239 *  - Depending on the function, the created string may be multi-line. However, it should never be terminated with a '\n'.
240 */
241#define DECLARE_FD_DUMP_PROTOTYPE( function_name, args... )     \
242        char * function_name(char ** buf, size_t *len, size_t *offset, ##args)
243
244#ifdef SWIG
245#define DECLARE_FD_DUMP_PROTOTYPE_simple( function_name )       \
246        char * function_name(char ** buf, size_t *len, size_t *offset)
247#endif /* SWIG */
248
249
250/* Helper functions for the *dump functions that add into a buffer */
251DECLARE_FD_DUMP_PROTOTYPE( fd_dump_extend, const char * format, ... ) _ATTRIBUTE_PRINTFLIKE_(4,5);
252DECLARE_FD_DUMP_PROTOTYPE( fd_dump_extend_hexdump, uint8_t *data, size_t datalen, size_t trunc, size_t wrap );
253
254
255/* Some helpers macro for writing such *_dump routine */
256#define FD_DUMP_STD_PARAMS  buf, len, offset
257#define FD_DUMP_HANDLE_OFFSET()  size_t o = 0; if (!offset) offset = &o; if (buf && (*buf) && !(*offset)) **buf='\0'
258#define FD_DUMP_HANDLE_TRAIL()  while ((*buf) && (*offset > 0) && ((*buf)[*offset - 1] == '\n')) { *offset -= 1; (*buf)[*offset] = '\0'; }
259
260
261
262/*============================================================*/
263/*                    DEBUG MACROS                            */
264/*============================================================*/
265
266#ifndef ASSERT
267#define ASSERT(x) assert(x)
268#endif /* ASSERT */
269
270/* log levels definitions, that are passed to the logger */
271#define FD_LOG_ANNOYING  0  /* very verbose loops and such "overkill" traces. Only active when the framework is compiled in DEBUG mode. */
272#define FD_LOG_DEBUG     1  /* Get a detailed sense of what is going on in the framework. Use this level for normal debug */
273#define FD_LOG_INFO      2  /* Informational execution states */
274#define FD_LOG_NOTICE    3  /* Normal execution states worth noting */
275#define FD_LOG_ERROR     5  /* Recoverable or expected error conditions */
276#define FD_LOG_FATAL     6  /* Unrecoverable error, e.g. malloc fail, etc. that requires the framework to shutdown */
277
278/* The level used by the default logger, can be changed by command-line arguments. Ignored for other loggers. */
279extern int fd_g_debug_lvl;
280
281/* Some portability code to get nice function name in __PRETTY_FUNCTION__ */
282#if (!defined( __func__)) && (__STDC_VERSION__ < 199901L)
283# if __GNUC__ >= 2
284#  define __func__ __FUNCTION__
285# else /* __GNUC__ >= 2 */
286#  define __func__ "<unknown>"
287# endif /* __GNUC__ >= 2 */
288#endif /*(!defined( __func__)) && (__STDC_VERSION__ < 199901L) */
289#ifndef __PRETTY_FUNCTION__
290#define __PRETTY_FUNCTION__ __func__
291#endif /* __PRETTY_FUNCTION__ */
292
293/* A version of __FILE__ without the full path. This is specific to each C file being compiled */
294static char * file_bname = NULL;
295static char * file_bname_init(char * full) { file_bname = basename(full); return file_bname; }
296#define __STRIPPED_FILE__       (file_bname ?: file_bname_init((char *)__FILE__))
297
298
299
300/* In DEBUG mode, we add meta-information along each trace. This makes multi-threading problems easier to debug. */
301#if (defined(DEBUG) && defined(DEBUG_WITH_META))
302# define STD_TRACE_FMT_STRING "pid:%s in %s@%s:%d: "
303# define STD_TRACE_FMT_ARGS   , ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed"), __PRETTY_FUNCTION__, __STRIPPED_FILE__, __LINE__
304#else /* DEBUG && DEBUG_WITH_META */
305# define STD_TRACE_FMT_STRING ""
306# define STD_TRACE_FMT_ARGS
307#endif /* DEBUG && DEBUG_WITH_META */
308
309/*************************
310  The general debug macro
311 *************************/
312#define LOG(printlevel,format,args... ) \
313        fd_log((printlevel), STD_TRACE_FMT_STRING format STD_TRACE_FMT_ARGS, ## args)
314
315/*
316 * Use the following macros in the code to get traces with location & pid in debug mode:
317 */
318#ifdef DEBUG
319# define LOG_A(format,args... ) \
320                do { if ((fd_debug_one_function && !strcmp(fd_debug_one_function, __PRETTY_FUNCTION__)) \
321                 || (fd_debug_one_file && !strcmp(fd_debug_one_file, __STRIPPED_FILE__) ) ) {           \
322                        LOG(FD_LOG_DEBUG,"[DBG_MATCH] " format,##args);                                 \
323                } else {                                                                                \
324                        LOG(FD_LOG_ANNOYING,format,##args);                                             \
325                } } while (0)
326#else /* DEBUG */
327# define LOG_A(format,args... ) /* not defined in release */
328#endif /* DEBUG */
329
330/* Debug information useful to follow in detail what is going on */
331#define LOG_D(format,args... ) \
332                LOG(FD_LOG_DEBUG, format, ##args)
333
334/* Report an info message */
335#define LOG_I(format,args... ) \
336                LOG(FD_LOG_INFO, format,##args)
337
338/* Report a normal message that is useful for normal admin monitoring */
339#define LOG_N(format,args... ) \
340                LOG(FD_LOG_NOTICE, format,##args)
341
342/* Report an error */
343#define LOG_E(format,args... ) \
344                LOG(FD_LOG_ERROR, format, ##args)
345
346/* Report a fatal error */
347#define LOG_F(format,args... ) \
348                LOG(FD_LOG_FATAL, format, ##args)
349
350
351/*************
352 Derivatives
353 ************/
354/* Trace a binary buffer content */
355#define LOG_BUFFER(printlevel, prefix, buf, bufsz, suffix ) {                                                           \
356        int __i;                                                                                                        \
357        size_t __sz = (size_t)(bufsz);                                                                                  \
358        uint8_t * __buf = (uint8_t *)(buf);                                                                             \
359        char __strbuf[1024+1];                                                                                          \
360        for (__i = 0; (__i < __sz) && (__i<(sizeof(__strbuf)/2)); __i++) {                                              \
361                sprintf(__strbuf + (2 * __i), "%02hhx", __buf[__i]);                                                    \
362        }                                                                                                               \
363        fd_log(printlevel, STD_TRACE_FMT_STRING "%s%s%s" STD_TRACE_FMT_ARGS,                                            \
364               (prefix), __strbuf, (suffix));                                                                           \
365}
366
367/* Split a multi-line buffer into separate calls to the LOG function. */
368#define LOG_SPLIT(printlevel, per_line_prefix, mlbuf, per_line_suffix ) {                                               \
369        char * __line = (mlbuf), *__next;                                                                               \
370        char * __p = (per_line_prefix), *__s = (per_line_suffix);                                                       \
371        while ((__next = strchr(__line, '\n')) != NULL) {                                                               \
372                LOG(printlevel, "%s%.*s%s", __p ?:"", (int)(__next - __line), __line, __s ?:"");                        \
373                __line = __next + 1;                                                                                    \
374        }                                                                                                               \
375        LOG(printlevel, "%s%s%s", __p ?:"", __line, __s ?:"");                                                          \
376}
377
378/* Helper for function entry -- for very detailed trace of the execution */
379#define TRACE_ENTRY(_format,_args... ) \
380                LOG_A("[enter] %s(" _format ") {" #_args "}", __PRETTY_FUNCTION__, ##_args );
381
382/* Helper for debugging by adding traces -- for debuging a specific location of the code */
383#define TRACE_HERE()    \
384                LOG_F(" -- debug checkpoint %d -- ", fd_breakhere());
385int fd_breakhere(void);
386
387/* Helper for tracing the CHECK_* macros below -- very very verbose code execution! */
388#define TRACE_CALL( str... )    \
389                LOG_A( str )
390
391/* For development only, to keep track of TODO locations in the code */
392#ifndef ERRORS_ON_TODO
393# define TODO( _msg, _args... ) \
394                LOG_F( "TODO: " _msg , ##_args);
395#else /* ERRORS_ON_TODO */
396# define TODO( _msg, _args... ) \
397                "TODO" = _msg ## _args; /* just a stupid compilation error to spot the todo */
398#endif /* ERRORS_ON_TODO */
399
400
401/*============================================================*/
402/*                  ERROR CHECKING MACRO                      */
403/*============================================================*/
404
405/* Macros to check a return value and branch out in case of error.
406 * These macro additionally provide the logging information.
407 *
408 * The name "__ret__" is always available in the __fallback__ parameter and contains the error code.
409 */
410
411#define CHECK_PRELUDE(__call__)                         \
412                int __ret__;                            \
413                TRACE_CALL("Check: %s", #__call__ );    \
414                __ret__ = (__call__)
415
416#define DEFAULT_FB      return __ret__;
417
418/* System check: error case if < 0, error value in errno */
419#define CHECK_SYS_GEN( faillevel, __call__, __fallback__  ) {                                           \
420                CHECK_PRELUDE(__call__);                                                                \
421                if (__ret__ < 0) {                                                                      \
422                        __ret__ = errno;                                                                \
423                        LOG(faillevel, "ERROR: in '%s' :\t%s",  #__call__ , strerror(__ret__));         \
424                        __fallback__;                                                                   \
425                }                                                                                       \
426}
427
428
429/* Check the return value of a function and execute fallback in case of error or special value */
430#define CHECK_FCT_GEN2( faillevel, __call__, __speval__, __fallback1__, __fallback2__ ) {               \
431                CHECK_PRELUDE(__call__);                                                                \
432                if (__ret__ != 0) {                                                                     \
433                        if (__ret__ == (__speval__)) {                                                  \
434                                __fallback1__;                                                          \
435                        } else {                                                                        \
436                                LOG(faillevel, "ERROR: in '%s' :\t%s", #__call__ , strerror(__ret__));  \
437                                __fallback2__;                                                          \
438                        }                                                                               \
439                }                                                                                       \
440}
441
442/* Check the return value of a function and execute fallback in case of error (return value different from 0) */
443#define CHECK_FCT_GEN( faillevel, __call__, __fallback__) \
444               CHECK_FCT_GEN2( faillevel, (__call__), 0, , (__fallback__) )
445
446/* Check that a memory allocator did not return NULL, otherwise log an error and execute fallback */
447#define CHECK_MALLOC_GEN( faillevel, __call__, __fallback__ ) {                                        \
448               void *  __ptr__;                                                                        \
449               TRACE_CALL("Check: %s", #__call__ );                                                    \
450               __ptr__ = (void *)(__call__);                                                           \
451               if (__ptr__ == NULL) {                                                                  \
452                       int __ret__ = errno;                                                            \
453                       LOG(faillevel, "ERROR: in '%s' :\t%s",  #__call__ , strerror(__ret__));         \
454                       __fallback__;                                                                   \
455               }                                                                                       \
456}
457
458/* Check parameters at function entry, execute fallback on error */
459#define CHECK_PARAMS_GEN( faillevel, __bool__, __fallback__ ) {                                        \
460               TRACE_CALL("Check: %s", #__bool__ );                                                    \
461               if ( ! (__bool__) ) {                                                                   \
462                       int __ret__ = EINVAL;                                                           \
463                       LOG(faillevel, "ERROR: invalid parameter '%s'",  #__bool__ );                   \
464                       __fallback__;                                                                   \
465               }                                                                                       \
466}
467
468
469/*============================================================*/
470/*          COMPATIBILITY MACROS, TO BE REMOVED               */
471/*============================================================*/
472/* Redefine the old macros for transition of the code */
473#ifndef EXCLUDE_DEPRECATED
474
475#define MARK_DEPRECATED /* __attribute__ ((deprecated)) */
476
477enum old_levels {
478        NONE = 0,
479        INFO = 1,
480        FULL = 2,
481        ANNOYING = 4,
482        FCTS = 6,
483        CALL = 9
484} MARK_DEPRECATED;
485
486static __inline__ int old_TRACE_BOOL( enum old_levels level, const char * file, const char * func ) MARK_DEPRECATED
487{
488        if ((fd_debug_one_function && !strcmp(fd_debug_one_function, func))
489                || (fd_debug_one_file && !strcmp(fd_debug_one_file, file) ))
490                return 2; /* Level override */
491        if ((int)level <= fd_g_debug_lvl)
492                return 1; /* Normal level */
493        return 0;  /* No trace */
494}
495#define TRACE_BOOL(level)  old_TRACE_BOOL((level), __STRIPPED_FILE__, __PRETTY_FUNCTION__)
496
497#ifndef SWIG
498static __inline__ void fd_log_deprecated( int level, const char *format, ... ) MARK_DEPRECATED
499{
500        va_list ap;
501        va_start(ap, format);
502        fd_log_va(level, format, ap);
503        va_end(ap);
504}
505#else /* SWIG */
506void fd_log_deprecated( int level, const char *format, ... );
507#endif /* SWIG */
508static __inline__ void replace_me() MARK_DEPRECATED { }
509
510#define TRACE_BUFFER(...) replace_me();
511#define TRACE_NOTICE(...) replace_me();
512
513
514/* Use the LOG_* instead, or use the new *_dump functions when dumping an object */
515#define fd_log_debug(format,args...)  fd_log_deprecated(FD_LOG_DEBUG, format, ## args)
516#define fd_log_notice(format,args...) fd_log_deprecated(FD_LOG_NOTICE, format, ## args)
517#define fd_log_error(format,args...)  fd_log_deprecated(FD_LOG_ERROR, format, ## args)
518
519/* old macro for traces. To be replaced by appropriate LOG_* macros. */
520# define TRACE_DEBUG(oldlevel, format,args... ) {                                       \
521                int __l__;                                                              \
522                if ((__l__ = TRACE_BOOL(oldlevel))) {                                   \
523                        if      (oldlevel <= NONE) { LOG_E(format,##args); }            \
524                        else if (oldlevel <= INFO) { LOG_I(format,##args); }            \
525                        else if (__l__ == 2)       { LOG_N(format,##args); }            \
526                        else if (oldlevel <= FULL) { LOG_D(format,##args); }            \
527                        else                       { LOG_A(format,##args); }            \
528}               }
529
530/* the following macro must be replaced with LOG_E or LOG_F */
531# define TRACE_ERROR    LOG_E
532
533
534/* The following macros are missing the faillevel information, which indicates at what log level the error case should be displayed. */
535# define CHECK_SYS_DO( __call__, __fallback__  ) {                                                      \
536                CHECK_PRELUDE(__call__);                                                                \
537                if (__ret__ < 0) {                                                                      \
538                        __ret__ = errno;                                                                \
539                        TRACE_ERROR("ERROR: in '%s' :\t%s",  #__call__ , strerror(__ret__));            \
540                        __fallback__;                                                                   \
541                }                                                                                       \
542}
543
544# define CHECK_SYS( __call__  ) \
545                CHECK_SYS_DO( (__call__), return __ret__  )
546
547
548# define CHECK_POSIX_DO2( __call__, __speval__, __fallback1__, __fallback2__ ) {                        \
549                CHECK_PRELUDE(__call__);                                                                \
550                if (__ret__ != 0) {                                                                     \
551                        if (__ret__ == (__speval__)) {                                                  \
552                                __fallback1__;                                                          \
553                        } else {                                                                        \
554                                TRACE_ERROR("ERROR: in '%s' :\t%s", #__call__ , strerror(__ret__));     \
555                                __fallback2__;                                                          \
556                        }                                                                               \
557                }                                                                                       \
558}
559
560# define CHECK_POSIX_DO( __call__, __fallback__ )       \
561                CHECK_POSIX_DO2( (__call__), 0, , __fallback__ )
562
563# define CHECK_POSIX( __call__ )        \
564                CHECK_POSIX_DO( (__call__), return __ret__ )
565
566# define CHECK_MALLOC_DO( __call__, __fallback__ ) {                                                   \
567               void *  __ptr__;                                                                        \
568               TRACE_CALL("Check: %s", #__call__ );                                                    \
569               __ptr__ = (void *)(__call__);                                                           \
570               if (__ptr__ == NULL) {                                                                  \
571                       int __ret__ = errno;                                                            \
572                      TRACE_ERROR("ERROR: in '%s' :\t%s",  #__call__ , strerror(__ret__));             \
573                       __fallback__;                                                                   \
574               }                                                                                       \
575}
576
577# define CHECK_MALLOC( __call__ )       \
578                CHECK_MALLOC_DO( (__call__), return __ret__ )
579
580# define CHECK_PARAMS_DO( __bool__, __fallback__ ) {                                                   \
581               TRACE_CALL("Check: %s", #__bool__ );                                                    \
582               if ( ! (__bool__) ) {                                                                   \
583                       int __ret__ = EINVAL;                                                           \
584                       TRACE_ERROR("ERROR: Invalid parameter '%s', %d",  #__bool__, __ret__ );         \
585                       __fallback__;                                                                   \
586               }                                                                                       \
587}
588
589# define CHECK_PARAMS( __bool__ )       \
590                CHECK_PARAMS_DO( (__bool__), return __ret__ )
591
592# define CHECK_FCT_DO   CHECK_POSIX_DO
593# define CHECK_FCT      CHECK_POSIX
594
595#endif /* EXCLUDE_DEPRECATED */
596
597
598/*============================================================*/
599/*      Optimized code: remove all debugging code             */
600/*============================================================*/
601#ifdef STRIP_DEBUG_CODE
602#undef LOG_D
603#undef LOG_I
604#undef LOG_N
605#undef LOG_E
606#undef LOG_F
607#undef LOG_BUFFER
608
609#define LOG_D(format,args... ) /* noop */
610#define LOG_I(format,args...) fd_log(FD_LOG_INFO, format, ## args)
611#define LOG_N(format,args...) fd_log(FD_LOG_NOTICE, format, ## args)
612#define LOG_E(format,args...) fd_log(FD_LOG_ERROR, format, ## args)
613#define LOG_F(format,args...) fd_log(FD_LOG_FATAL, format, ## args)
614#define LOG_BUFFER(printlevel, level, prefix, buf, bufsz, suffix ) {                                                            \
615        if (printlevel > FD_LOG_DEBUG) {                                                                                        \
616                int __i;                                                                                                        \
617                size_t __sz = (size_t)(bufsz);                                                                                  \
618                uint8_t * __buf = (uint8_t *)(buf);                                                                             \
619                char * __strbuf[1024+1];                                                                                        \
620                for (__i = 0; (__i < __sz) && (__i<(sizeof(__strbuf)/2); __i++) {                                               \
621                        sprintf(__strbuf + (2 * __i), "%02.2hhx", __buf[__i]);                                                  \
622                }                                                                                                               \
623                fd_log(printlevel, prefix"%s"suffix, __strbuf);                                                                 \
624        }
625#endif /* STRIP_DEBUG_CODE */
626
627/*============================================================*/
628/*                  OTHER MACROS                              */
629/*============================================================*/
630/* helper macros (pre-processor hacks to allow macro arguments) */
631#define __tostr( arg )  #arg
632#define _stringize( arg ) __tostr( arg )
633#define __agr( arg1, arg2 ) arg1 ## arg2
634#define _aggregate( arg1, arg2 ) __agr( arg1, arg2 )
635
636/* Some aliases to socket addresses structures */
637#define sSS     struct sockaddr_storage
638#define sSA     struct sockaddr
639#define sSA4    struct sockaddr_in
640#define sSA6    struct sockaddr_in6
641
642/* The sockaddr length of a sSS structure */
643#define sSAlen( _sa_ )  \
644        ( (socklen_t) ( (((sSA *)_sa_)->sa_family == AF_INET) ? (sizeof(sSA4)) :                \
645                                ((((sSA *)_sa_)->sa_family == AF_INET6) ? (sizeof(sSA6)) :      \
646                                        0 ) ) )
647#define sSAport( _sa_ ) \
648        ( (socklen_t) ( (((sSA *)_sa_)->sa_family == AF_INET) ? (((sSA4 *)(_sa_))->sin_port) :          \
649                                ((((sSA *)_sa_)->sa_family == AF_INET6) ? (((sSA6 *)(_sa_))->sin6_port) :       \
650                                        0 ) ) )
651
652DECLARE_FD_DUMP_PROTOTYPE(fd_sa_dump, sSA * sa, int flags);
653#define sSA_DUMP_STRLEN (INET6_ADDRSTRLEN + 1 + 32 + 2)
654void fd_sa_sdump_numeric(char * buf /* must be at least sSA_DUMP_STRLEN */, sSA * sa);
655
656
657/* A l4 protocol name (TCP / SCTP) */
658#ifdef DISABLE_SCTP
659#define IPPROTO_NAME( _proto )                                  \
660        (((_proto) == IPPROTO_TCP) ? "TCP" :                    \
661                        "Unknown")
662#else /* DISABLE_SCTP */
663#define IPPROTO_NAME( _proto )                                  \
664        ( ((_proto) == IPPROTO_TCP) ? "TCP" :                   \
665                (((_proto) == IPPROTO_SCTP) ? "SCTP" :          \
666                        "Unknown"))
667#endif /* DISABLE_SCTP */
668
669/* Define the value of IP loopback address */
670#ifndef INADDR_LOOPBACK
671#define INADDR_LOOPBACK inet_addr("127.0.0.1")
672#endif /* INADDR_LOOPBACK */
673
674#ifndef INADDR_BROADCAST
675#define INADDR_BROADCAST        ((in_addr_t) 0xffffffff)
676#endif /* INADDR_BROADCAST */
677
678/* An IP equivalent to IN6_IS_ADDR_LOOPBACK */
679#ifndef IN_IS_ADDR_LOOPBACK
680#define IN_IS_ADDR_LOOPBACK(a) \
681  ((((long int) (a)->s_addr) & ntohl(0xff000000)) == ntohl(0x7f000000))
682#endif /* IN_IS_ADDR_LOOPBACK */
683
684/* An IP equivalent to IN6_IS_ADDR_UNSPECIFIED */
685#ifndef IN_IS_ADDR_UNSPECIFIED
686#define IN_IS_ADDR_UNSPECIFIED(a) \
687  (((long int) (a)->s_addr) == 0x00000000)
688#endif /* IN_IS_ADDR_UNSPECIFIED */
689
690/* create a V4MAPPED address */
691#define IN6_ADDR_V4MAP( a6, a4 ) {                      \
692        memset(&(*a6)[0], 0, 10);                       \
693        (*a6)[10] = 0xff;                               \
694        (*a6)[11] = 0xff;                               \
695        memcpy(&(*a6)[12], &a4, 4);                     \
696}
697
698/* Retrieve a v4 value from V4MAPPED address ( takes a s6_addr as param) */
699#define IN6_ADDR_V4UNMAP( a6 )                          \
700        (((in_addr_t *)(a6))[3])
701
702
703/* We provide macros to convert 64 bit values to and from network byte-order, on systems where it is not already provided. */
704#ifndef HAVE_NTOHLL     /* Defined by the cmake step, if the ntohll symbol is defined on the system */
705# if HOST_BIG_ENDIAN
706    /* In big-endian systems, we don't have to change the values, since the order is the same as network */
707#   define ntohll(x) (x)
708#   define htonll(x) (x)
709# else /* HOST_BIG_ENDIAN */
710    /* For these systems, we must reverse the bytes. Use ntohl and htonl on sub-32 blocs, and inverse these blocs. */
711#   define ntohll(x) (typeof (x))( (((uint64_t)ntohl( (uint32_t)(x))) << 32 ) | ((uint64_t) ntohl( ((uint64_t)(x)) >> 32 )))
712#   define htonll(x) (typeof (x))( (((uint64_t)htonl( (uint32_t)(x))) << 32 ) | ((uint64_t) htonl( ((uint64_t)(x)) >> 32 )))
713# endif /* HOST_BIG_ENDIAN */
714#endif /* HAVE_NTOHLL */
715
716/* This macro will give the next multiple of 4 for an integer (used for padding sizes of AVP). */
717#define PAD4(_x) ((_x) + ( (4 - (_x)) & 3 ) )
718
719/* Useful to display any value as (safe) ASCII (will garbage UTF-8 output...) */
720#define ASCII(_c) ( ((_c < 32) || (_c > 127)) ? ( _c ? '?' : ' ' ) : _c )
721
722/* Compare timespec structures */
723#define TS_IS_INFERIOR( ts1, ts2 )              \
724        (    ((ts1)->tv_sec  < (ts2)->tv_sec )  \
725          || (((ts1)->tv_sec  == (ts2)->tv_sec ) && ((ts1)->tv_nsec < (ts2)->tv_nsec) ))
726
727/* Compute diff between two timespecs (pointers) */
728#define TS_DIFFERENCE( tsdiff, tsstart, tsend ) {                                       \
729        if ((tsend)->tv_nsec < (tsstart)->tv_nsec ) {                                   \
730                (tsdiff)->tv_sec = (tsend)->tv_sec - (tsstart)->tv_sec - 1;             \
731                (tsdiff)->tv_nsec = (tsend)->tv_nsec + 1000000000 - (tsstart)->tv_nsec; \
732        } else {                                                                        \
733                (tsdiff)->tv_sec  = (tsend)->tv_sec  - (tsstart)->tv_sec;               \
734                (tsdiff)->tv_nsec = (tsend)->tv_nsec - (tsstart)->tv_nsec;              \
735        }}
736
737
738/* This gives a good size for buffered reads */
739#ifndef BUFSIZ
740#define BUFSIZ 96
741#endif /* BUFSIZ */
742
743/* This gives the length of a const string */
744#define CONSTSTRLEN( str ) (sizeof(str) - 1)
745
746
747/*============================================================*/
748/*                         PORTABILITY                        */
749/*============================================================*/
750#ifndef HAVE_CLOCK_GETTIME
751  #define CLOCK_REALTIME  0
752  #include <sys/time.h>
753  int clock_gettime(int clk_id, struct timespec* ts);
754#endif /* HAVE_CLOCK_GETTIME */
755
756#ifndef HAVE_STRNDUP
757char * strndup (char *str, size_t len);
758#endif /* HAVE_STRNDUP */
759
760
761/*============================================================*/
762/*                         BINARY STRINGS                     */
763/*============================================================*/
764
765/* Compute a hash value of a binary string.
766The hash must remain local to this machine, there is no guarantee that same input
767will give same output on a different system (endianness) */
768uint32_t fd_os_hash ( uint8_t * string, size_t len );
769
770/* This type used for binary strings that contain no \0 except as their last character.
771It means some string operations can be used on it. */
772typedef uint8_t * os0_t;
773
774/* Same as strdup but for os0_t strings */
775os0_t os0dup_int(os0_t s, size_t l);
776#define os0dup( _s, _l)  (void *)os0dup_int((os0_t)(_s), _l)
777
778/* Check that an octet string value can be used as os0_t */
779static __inline__ int fd_os_is_valid_os0(uint8_t * os, size_t oslen) {
780        /* The only situation where it is not valid is when it contains a \0 inside the octet string */
781        return (memchr(os, '\0', oslen) == NULL);
782}
783
784/* The following type denotes a verified DiameterIdentity value (that contains only pure letters, digits, hyphen, dot) */
785typedef char * DiamId_t;
786
787/* Maximum length of a hostname we accept */
788#ifndef HOST_NAME_MAX
789#define HOST_NAME_MAX 512
790#endif /* HOST_NAME_MAX */
791
792/* Check if a binary string contains a valid Diameter Identity value.
793  rfc3588 states explicitely that such a Diameter Identity consists only of ASCII characters. */
794int fd_os_is_valid_DiameterIdentity(uint8_t * os, size_t ossz);
795
796/* The following function validates a string as a Diameter Identity or applies the IDNA transformation on it
797 if *inoutsz is != 0 on entry, *id may not be \0-terminated.
798 memory has the following meaning: 0: *id can be realloc'd. 1: *id must be malloc'd on output (was static)
799*/
800int fd_os_validate_DiameterIdentity(char ** id, size_t * inoutsz, int memory);
801
802/* Create an order relationship for binary strings (not needed to be \0 terminated).
803   It does NOT mimic strings relationships so that it is more efficient. It is case sensitive.
804   (the strings are actually first ordered by their lengh, then by their bytes contents)
805   returns: -1 if os1 < os2;  +1 if os1 > os2;  0 if they are equal */
806int fd_os_cmp_int(os0_t os1, size_t os1sz, os0_t os2, size_t os2sz);
807#define fd_os_cmp(_o1, _l1, _o2, _l2)  fd_os_cmp_int((os0_t)(_o1), _l1, (os0_t)(_o2), _l2)
808
809/* A roughly case-insensitive variant, which actually only compares ASCII chars (0-127) in a case-insentitive maneer
810  -- it does not support locales where a lowercase letter uses more space than upper case, such as ß -> ss
811 It is slower than fd_os_cmp.
812 Note that the result is NOT the same as strcasecmp !!!
813
814 This function gives the same order as fd_os_cmp, except when it finds 2 strings to be equal.
815 However this is not always sufficient:
816        for example fd_os_cmp gives: "Ac" < "aB" < "aa"
817        if you attempt to fd_os_almostcasesrch "Aa" you will actually have to go past "aB" which is > "Aa".
818        Therefore you can use the maybefurther parameter.
819        This parameter is 1 on return if os1 may have been stored further that os2 (assuming os2 values are ordered by fd_os_cmp)
820        and 0 if we are sure that it is not the case.
821        When looping through a list of fd_os_cmp classified values, this parameter must be used to stop looping, in addition to the comp result.
822 */
823int fd_os_almostcasesrch_int(uint8_t * os1, size_t os1sz, uint8_t * os2, size_t os2sz, int * maybefurther);
824#define fd_os_almostcasesrch(_o1, _l1, _o2, _l2, _mb)  fd_os_almostcasesrch_int((os0_t)(_o1), _l1, (os0_t)(_o2), _l2, _mb)
825
826/* Analyze a DiameterURI and return its components.
827  Return EINVAL if the URI is not valid.
828  *diamid is malloc'd on function return and must be freed (it is processed by fd_os_validate_DiameterIdentity).
829  *secure is 0 (no security) or 1 (security enabled) on return.
830  *port is 0 (default) or a value in host byte order on return.
831  *transport is 0 (default) or IPPROTO_* on return.
832  *proto is 0 (default) or 'd' (diameter), 'r' (radius), or 't' (tacacs+) on return.
833  */
834int fd_os_parse_DiameterURI(uint8_t * uri, size_t urisz, DiamId_t * diamid, size_t * diamidlen, int * secure, uint16_t * port, int * transport, char *proto);
835
836/*============================================================*/
837/*                          THREADS                           */
838/*============================================================*/
839
840/* Terminate a thread */
841static __inline__ int fd_thr_term(pthread_t * th)
842{
843        void * th_ret = NULL;
844
845        CHECK_PARAMS(th);
846
847        /* Test if it was already terminated */
848        if (*th == (pthread_t)NULL)
849                return 0;
850
851        /* Cancel the thread if it is still running - ignore error if it was already terminated */
852        (void) pthread_cancel(*th);
853
854        /* Then join the thread */
855        CHECK_POSIX( pthread_join(*th, &th_ret) );
856
857        if (th_ret == PTHREAD_CANCELED) {
858                TRACE_DEBUG(ANNOYING, "The thread %p was canceled", (void *)*th);
859        } else {
860                TRACE_DEBUG(CALL, "The thread %p returned %p", (void *)*th, th_ret);
861        }
862
863        /* Clean the location */
864        *th = (pthread_t)NULL;
865
866        return 0;
867}
868
869
870/*************
871 Cancelation cleanup handlers for common objects
872 *************/
873static __inline__ void fd_cleanup_mutex( void * mutex )
874{
875        CHECK_POSIX_DO( pthread_mutex_unlock((pthread_mutex_t *)mutex), /* */);
876}
877
878static __inline__ void fd_cleanup_rwlock( void * rwlock )
879{
880        CHECK_POSIX_DO( pthread_rwlock_unlock((pthread_rwlock_t *)rwlock), /* */);
881}
882
883static __inline__ void fd_cleanup_buffer( void * buffer )
884{
885        free(buffer);
886}
887static __inline__ void fd_cleanup_socket(void * sockptr)
888{
889        if (sockptr && (*(int *)sockptr > 0)) {
890                CHECK_SYS_DO( close(*(int *)sockptr), /* ignore */ );
891                *(int *)sockptr = -1;
892        }
893}
894
895
896/*============================================================*/
897/*                          LISTS                             */
898/*============================================================*/
899
900/* The following structure represents a chained list element  */
901struct fd_list {
902        struct fd_list  *next; /* next element in the list */
903        struct fd_list  *prev; /* previous element in the list */
904        struct fd_list  *head; /* head of the list */
905        void            *o;    /* additional pointer, used for any purpose (ex: start of the parent object) */
906};
907
908/* Initialize a list element */
909#define FD_LIST_INITIALIZER( _list_name ) \
910        { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = NULL }
911#define FD_LIST_INITIALIZER_O( _list_name, _obj ) \
912        { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = _obj }
913void fd_list_init ( struct fd_list * list, void * obj );
914
915/* Return boolean, true if the list is empty */
916#define FD_IS_LIST_EMPTY( _list ) ((((struct fd_list *)(_list))->head == (_list)) && (((struct fd_list *)(_list))->next == (_list)))
917
918/* Insert an item in a list at known position */
919void fd_list_insert_after  ( struct fd_list * ref, struct fd_list * item );
920void fd_list_insert_before ( struct fd_list * ref, struct fd_list * item );
921
922/* Move all elements from a list at the end of another */
923void fd_list_move_end(struct fd_list * ref, struct fd_list * senti);
924
925/* Insert an item in an ordered list -- ordering function must be provided. If duplicate object found, EEXIST and it is returned in ref_duplicate */
926int fd_list_insert_ordered( struct fd_list * head, struct fd_list * item, int (*cmp_fct)(void *, void *), void ** ref_duplicate);
927
928/* Unlink an item from a list */
929void fd_list_unlink ( struct fd_list * item );
930
931
932
933
934/*============================================================*/
935/*                        DICTIONARY                          */
936/*============================================================*/
937
938/* Structure that contains the complete dictionary definitions */
939struct dictionary;
940
941/* Structure that contains a dictionary object */
942struct dict_object;
943
944/* Types of object in the dictionary. */
945enum dict_object_type {
946        DICT_VENDOR     = 1,    /* Vendor */
947        DICT_APPLICATION,       /* Diameter Application */
948        DICT_TYPE,              /* AVP data type */
949        DICT_ENUMVAL,           /* Named constant (value of an enumerated AVP type) */
950        DICT_AVP,               /* AVP */
951        DICT_COMMAND,           /* Diameter Command */
952        DICT_RULE               /* a Rule for AVP in command or grouped AVP */
953#define DICT_TYPE_MAX   DICT_RULE
954};
955
956/* Initialize a dictionary */
957int fd_dict_init(struct dictionary ** dict);
958/* Destroy a dictionary */
959int fd_dict_fini(struct dictionary ** dict);
960
961/*
962 * FUNCTION:    fd_dict_new
963 *
964 * PARAMETERS:
965 *  dict        : Pointer to the dictionary where the object is created
966 *  type        : What kind of object must be created
967 *  data        : pointer to the data for the object.
968 *               type parameter is used to determine the type of data (see below for detail).
969 *  parent      : a reference to a parent object, if needed.
970 *  ref         : upon successful creation, reference to new object is stored here if !null.
971 *
972 * DESCRIPTION:
973 *  Create a new object in the dictionary.
974 *  See following object sections in this header file for more information on data and parent parameters format.
975 *
976 * RETURN VALUE:
977 *  0           : The object is created in the dictionary.
978 *  EINVAL      : A parameter is invalid.
979 *  EEXIST      : This object is already defined in the dictionary (with conflicting data).
980 *                If "ref" is not NULL, it points to the existing element on return.
981 *  (other standard errors may be returned, too, with their standard meaning. Example:
982 *    ENOMEM    : Memory allocation for the new object element failed.)
983 */
984int fd_dict_new ( struct dictionary * dict, enum dict_object_type type, void * data, struct dict_object * parent, struct dict_object ** ref );
985
986/*
987 * FUNCTION:    fd_dict_search
988 *
989 * PARAMETERS:
990 *  dict        : Pointer to the dictionary where the object is searched
991 *  type        : type of object that is being searched
992 *  criteria    : how the object must be searched. See object-related sections below for more information.
993 *  what        : depending on criteria, the data that must be searched.
994 *  result      : On successful return, pointer to the object is stored here.
995 *  retval      : this value is returned if the object is not found and result is not NULL.
996 *
997 * DESCRIPTION:
998 *   Perform a search in the dictionary.
999 *   See the object-specific sections below to find how to look for each objects.
1000 *   If the "result" parameter is NULL, the function is used to check if an object is in the dictionary.
1001 *   Otherwise, a reference to the object is stored in result if found.
1002 *   If result is not NULL and the object is not found, retval is returned (should be 0 or ENOENT usually)
1003 *
1004 * RETURN VALUE:
1005 *  0           : The object has been found in the dictionary, or *result is NULL.
1006 *  EINVAL      : A parameter is invalid.
1007 *  ENOENT      : No matching object has been found, and result was NULL.
1008 */
1009int fd_dict_search ( struct dictionary * dict, enum dict_object_type type, int criteria, const void * what, struct dict_object ** result, int retval );
1010
1011/* Special case: get the generic error command object */
1012int fd_dict_get_error_cmd(struct dictionary * dict, struct dict_object ** obj);
1013
1014/*
1015 * FUNCTION:    fd_dict_getval
1016 *
1017 * PARAMETERS:
1018 *  object      : Pointer to a dictionary object.
1019 *  data        : pointer to a structure to hold the data for the object.
1020 *                The type is the same as "data" parameter in fd_dict_new function.
1021 *
1022 * DESCRIPTION:
1023 *  Retrieve content of a dictionary object.
1024 *  See following object sections in this header file for more information on data and parent parameters format.
1025 *
1026 * RETURN VALUE:
1027 *  0           : The content of the object has been retrieved.
1028 *  EINVAL      : A parameter is invalid.
1029 */
1030int fd_dict_getval ( struct dict_object * object, void * val);
1031int fd_dict_gettype ( struct dict_object * object, enum dict_object_type * type);
1032int fd_dict_getdict ( struct dict_object * object, struct dictionary ** dict);
1033
1034/* Debug functions */
1035DECLARE_FD_DUMP_PROTOTYPE(fd_dict_dump_object, struct dict_object * obj);
1036DECLARE_FD_DUMP_PROTOTYPE(fd_dict_dump, struct dictionary * dict);
1037
1038/* Function to access full contents of the dictionary, see doc in dictionary.c */
1039int fd_dict_getlistof(int criteria, void * parent, struct fd_list ** sentinel);
1040
1041/* Function to remove an entry from the dictionary.
1042  This cannot be used if the object has children (for example a vendor with vendor-specific AVPs).
1043  In such case, the children must be removed first. */
1044int fd_dict_delete(struct dict_object * obj);
1045
1046/*
1047 ***************************************************************************
1048 *
1049 * Vendor object
1050 *
1051 * These types are used to manage vendors in the dictionary
1052 *
1053 ***************************************************************************
1054 */
1055
1056/* Type to hold a Vendor ID: "SMI Network Management Private Enterprise Codes" (RFC3232) */
1057typedef uint32_t        vendor_id_t;
1058
1059/* Type to hold data associated to a vendor */
1060struct dict_vendor_data {
1061        vendor_id_t      vendor_id;     /* ID of a vendor */
1062        char *           vendor_name;   /* The name of this vendor */
1063};
1064
1065/* The criteria for searching a vendor object in the dictionary */
1066enum {
1067        VENDOR_BY_ID = 10,      /* "what" points to a vendor_id_t */
1068        VENDOR_BY_NAME,         /* "what" points to a char * */
1069        VENDOR_OF_APPLICATION,  /* "what" points to a struct dict_object containing an application (see below) */
1070        VENDOR_OF_AVP,          /* "what" points to a struct dict_object containing an avp (see below) */
1071};
1072
1073/***
1074 *  API usage :
1075
1076Note: the value of "vendor_name" is copied when the object is created, and the string may be disposed afterwards.
1077On the other side, when value is retrieved with dict_getval, the string is not copied and MUST NOT be freed. It will
1078be freed automatically along with the object itself with call to dict_fini later.
1079
1080- fd_dict_new:
1081 The "parent" parameter is not used for vendors.
1082 Sample code to create a vendor:
1083 {
1084         int ret;
1085         struct dict_object * myvendor;
1086         struct dict_vendor_data myvendordata = { 23455, "my vendor name" };  -- just an example...
1087         ret = fd_dict_new ( dict, DICT_VENDOR, &myvendordata, NULL, &myvendor );
1088 }
1089
1090- fd_dict_search:
1091 Sample codes to look for a vendor object, by its id or name:
1092 {
1093         int ret;
1094         struct dict_object * vendor_found;
1095         vendor_id_t vendorid = 23455;
1096         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_ID, &vendorid, &vendor_found, ENOENT);
1097         - or -
1098         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &vendor_found, ENOENT);
1099 }
1100
1101 - fd_dict_getval:
1102 Sample code to retrieve the data from a vendor object:
1103 {
1104         int ret;
1105         struct dict_object * myvendor;
1106         struct dict_vendor_data myvendordata;
1107         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &myvendor, ENOENT);
1108         ret = fd_dict_getval ( myvendor, &myvendordata );
1109         printf("my vendor id: %d\n", myvendordata.vendor_id );
1110 }
1111
1112*/
1113
1114/* Special function: */
1115uint32_t * fd_dict_get_vendorid_list(struct dictionary * dict);
1116
1117/*
1118 ***************************************************************************
1119 *
1120 * Application object
1121 *
1122 * These types are used to manage Diameter applications in the dictionary
1123 *
1124 ***************************************************************************
1125 */
1126
1127/* Type to hold a Diameter application ID: IANA assigned value for this application. */
1128typedef uint32_t        application_id_t;
1129
1130/* Type to hold data associated to an application */
1131struct dict_application_data {
1132        application_id_t         application_id;        /* ID of the application */
1133        char *                   application_name;      /* The name of this application */
1134};
1135
1136/* The criteria for searching an application object in the dictionary */
1137enum {
1138        APPLICATION_BY_ID = 20,         /* "what" points to a application_id_t */
1139        APPLICATION_BY_NAME,            /* "what" points to a char * */
1140        APPLICATION_OF_TYPE,            /* "what" points to a struct dict_object containing a type object (see below) */
1141        APPLICATION_OF_COMMAND          /* "what" points to a struct dict_object containing a command (see below) */
1142};
1143
1144/***
1145 *  API usage :
1146
1147The "parent" parameter of dict_new may point to a vendor object to inform of what vendor defines the application.
1148for standard-track applications, the "parent" parameter should be NULL.
1149The vendor associated to an application is retrieved with VENDOR_OF_APPLICATION search criteria on vendors.
1150
1151- fd_dict_new:
1152 Sample code for application creation:
1153 {
1154         int ret;
1155         struct dict_object * vendor;
1156         struct dict_object * appl;
1157         struct dict_vendor_data vendor_data = {
1158                 23455,
1159                 "my vendor name"
1160         };
1161         struct dict_application_data app_data = {
1162                 9789,
1163                 "my vendor's application"
1164         };
1165
1166         ret = fd_dict_new ( dict, DICT_VENDOR, &vendor_data, NULL, &vendor );
1167         ret = fd_dict_new ( dict, DICT_APPLICATION, &app_data, vendor, &appl );
1168 }
1169
1170- fd_dict_search:
1171 Sample code to retrieve the vendor of an application
1172 {
1173         int ret;
1174         struct dict_object * vendor, * appli;
1175
1176         ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
1177         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_OF_APPLICATION, appli, &vendor, ENOENT);
1178 }
1179
1180 - fd_dict_getval:
1181 Sample code to retrieve the data from an application object:
1182 {
1183         int ret;
1184         struct dict_object * appli;
1185         struct dict_application_data appl_data;
1186         ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
1187         ret = fd_dict_getval ( appli, &appl_data );
1188         printf("my application id: %s\n", appl_data.application_id );
1189 }
1190
1191*/
1192
1193/*
1194 ***************************************************************************
1195 *
1196 * Type object
1197 *
1198 * These types are used to manage AVP data types in the dictionary
1199 *
1200 ***************************************************************************
1201 */
1202
1203/* Type to store any AVP value */
1204union avp_value {
1205        struct {
1206                uint8_t *data;  /* bytes buffer */
1207                size_t   len;   /* length of the data buffer */
1208        }           os;         /* Storage for an octet string */
1209        int32_t     i32;        /* integer 32 */
1210        int64_t     i64;        /* integer 64 */
1211        uint32_t    u32;        /* unsigned 32 */
1212        uint64_t    u64;        /* unsigned 64 */
1213        float       f32;        /* float 32 */
1214        double      f64;        /* float 64 */
1215};
1216
1217/* These are the basic AVP types defined in RFC3588bis */
1218enum dict_avp_basetype {
1219        AVP_TYPE_GROUPED,
1220        AVP_TYPE_OCTETSTRING,
1221        AVP_TYPE_INTEGER32,
1222        AVP_TYPE_INTEGER64,
1223        AVP_TYPE_UNSIGNED32,
1224        AVP_TYPE_UNSIGNED64,
1225        AVP_TYPE_FLOAT32,
1226        AVP_TYPE_FLOAT64
1227#define AVP_TYPE_MAX AVP_TYPE_FLOAT64
1228};
1229
1230/* Callbacks that can be associated with a derived type to easily interpret the AVP value. */
1231/*
1232 * CALLBACK:    dict_avpdata_interpret
1233 *
1234 * PARAMETERS:
1235 *   val         : Pointer to the AVP value that must be interpreted.
1236 *   interpreted : The result of interpretation is stored here. The format and meaning depends on each type.
1237 *
1238 * DESCRIPTION:
1239 *   This callback can be provided with a derived type in order to facilitate the interpretation of formated data.
1240 *  For example, when an AVP of type "Address" is received, it can be used to convert the octetstring into a struct sockaddr.
1241 *  This callback is not called directly, but through the message's API msg_avp_value_interpret function.
1242 *
1243 * RETURN VALUE:
1244 *  0           : Operation complete.
1245 *  !0          : An error occurred, the error code is returned.
1246 */
1247typedef int (*dict_avpdata_interpret) (union avp_value * value, void * interpreted);
1248/*
1249 * CALLBACK:    dict_avpdata_encode
1250 *
1251 * PARAMETERS:
1252 *   data       : The formated data that must be stored in the AVP value.
1253 *   val        : Pointer to the AVP value storage area where the data must be stored.
1254 *
1255 * DESCRIPTION:
1256 *   This callback can be provided with a derived type in order to facilitate the encoding of formated data.
1257 *  For example, it can be used to convert a struct sockaddr in an AVP value of type Address.
1258 *  This callback is not called directly, but through the message's API msg_avp_value_encode function.
1259 *  If the callback is defined for an OctetString based type, the created string must be malloc'd. free will be called
1260 *  automatically later.
1261 *
1262 * RETURN VALUE:
1263 *  0           : Operation complete.
1264 *  !0          : An error occurred, the error code is returned.
1265 */
1266typedef int (*dict_avpdata_encode) (void * data, union avp_value * val);
1267
1268/*
1269 * CALLBACK:    dict_avpdata_check
1270 *
1271 * PARAMETERS:
1272 *   val        : Pointer to the AVP value that was received and needs to be sanity checked.
1273 *   data      : a parameter stored in the type structure (to enable more generic check functions)
1274 *   error_msg: upon erroneous value, a string describing the error can be returned here (it will be strcpy by caller). This description will be returned in the error message, if any.
1275 *
1276 * DESCRIPTION:
1277 *   This callback can be provided with a derived type in order to improve the operation of the
1278 *  fd_msg_parse_dict function. When this callback is present, the value of the AVP that has
1279 * been parsed is passed to this function for finer granularity check. For example for some
1280 * speccific AVP, the format of an OCTETSTRING value can be further checked, or the
1281 * interger value can be verified.
1282 *
1283 * RETURN VALUE:
1284 *  0           : The value is valid.
1285 *  !0          : An error occurred, the error code is returned. It is advised to return EINVAL on incorrect val
1286 */
1287typedef int (*dict_avpdata_check) (void * data, union avp_value * val, char ** error_msg);
1288
1289
1290
1291/* Type to hold data associated to a derived AVP data type */
1292struct dict_type_data {
1293        enum dict_avp_basetype   type_base;     /* How the data of such AVP must be interpreted */
1294        char *                   type_name;     /* The name of this type */
1295        dict_avpdata_interpret   type_interpret;/* cb to convert the AVP value in more comprehensive format (or NULL) */
1296        dict_avpdata_encode      type_encode;   /* cb to convert formatted data into an AVP value (or NULL) */
1297        DECLARE_FD_DUMP_PROTOTYPE((*type_dump), union avp_value * val); /* cb called by fd_msg_dump_* for this type of data (if != NULL). Returned string must be freed.  */
1298        dict_avpdata_check       type_check;
1299        void  *                          type_check_param;
1300};
1301
1302/* The criteria for searching a type object in the dictionary */
1303enum {
1304        TYPE_BY_NAME = 30,              /* "what" points to a char * */
1305        TYPE_OF_ENUMVAL,                /* "what" points to a struct dict_object containing an enumerated constant (DICT_ENUMVAL, see below). */
1306        TYPE_OF_AVP                     /* "what" points to a struct dict_object containing an AVP object. */
1307};
1308
1309/****
1310 Callbacks defined in libfdproto/dictionary_functions.c file -- see that file for usage.
1311 */
1312
1313/* Convert an Address type AVP into a struct sockaddr_storage */
1314int fd_dictfct_Address_encode(void * data, union avp_value * avp_value);
1315int fd_dictfct_Address_interpret(union avp_value * avp_value, void * interpreted);
1316DECLARE_FD_DUMP_PROTOTYPE(fd_dictfct_Address_dump, union avp_value * avp_value);
1317
1318/* Display the content of an AVP of type UTF8String in the log file */
1319DECLARE_FD_DUMP_PROTOTYPE(fd_dictfct_UTF8String_dump, union avp_value * avp_value);
1320
1321/* For Time AVPs, map with time_t value directly */
1322int fd_dictfct_Time_encode(void * data, union avp_value * avp_value);
1323int fd_dictfct_Time_interpret(union avp_value * avp_value, void * interpreted);
1324DECLARE_FD_DUMP_PROTOTYPE(fd_dictfct_Time_dump, union avp_value * avp_value);
1325
1326
1327/* For string AVP, the following type_check function provides simple basic check for specific characters presence, e.g. use "@." for trivial email address check */
1328int fd_dictfct_CharInOS_check(void * data, union avp_value * val, char ** error_msg);
1329
1330
1331/****/
1332
1333/***
1334 *  API usage :
1335
1336- fd_dict_new:
1337 The "parent" parameter may point to an application object, when a type is defined by a Diameter application.
1338
1339 Sample code:
1340 {
1341         int ret;
1342         struct dict_object * mytype;
1343         struct dict_type_data mytypedata =
1344                {
1345                 AVP_TYPE_OCTETSTRING,
1346                 "Address",
1347                 NULL,
1348                 NULL
1349                };
1350         ret = fd_dict_new ( dict, DICT_TYPE, &mytypedata, NULL, &mytype );
1351 }
1352
1353- fd_dict_search:
1354 Sample code:
1355 {
1356         int ret;
1357         struct dict_object * address_type;
1358         ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Address", &address_type, ENOENT);
1359 }
1360
1361*/
1362
1363/*
1364 ***************************************************************************
1365 *
1366 * Enumerated values object
1367 *
1368 * These types are used to manage named constants of some AVP,
1369 * for enumerated types. freeDiameter allows constants for types others than Unsigned32
1370 *
1371 ***************************************************************************
1372 */
1373
1374/* Type to hold data of named constants for AVP */
1375struct dict_enumval_data {
1376        char *           enum_name;     /* The name of this constant */
1377        union avp_value  enum_value;    /* Value of the constant. Union term depends on parent type's base type. */
1378};
1379
1380/* The criteria for searching a constant in the dictionary */
1381enum {
1382        ENUMVAL_BY_STRUCT = 40, /* "what" points to a struct dict_enumval_request as defined below */
1383        ENUMVAL_BY_NAME,        /* This cannot be used for searches */
1384        ENUMVAL_BY_VALUE        /* This cannot be used for searches */
1385};
1386
1387struct dict_enumval_request {
1388        /* Identifier of the parent type, one of the following must not be NULL */
1389        struct dict_object      *type_obj;
1390        char *                   type_name;
1391
1392        /* Search criteria for the constant */
1393        struct dict_enumval_data search; /* search.enum_value is used only if search.enum_name == NULL */
1394};
1395
1396/***
1397 *  API usage :
1398
1399- fd_dict_new:
1400 The "parent" parameter must point to a derived type object.
1401 Sample code to create a type "Boolean" with two constants "True" and "False":
1402 {
1403         int ret;
1404         struct dict_object * type_boolean;
1405         struct dict_type_data type_boolean_data =
1406                {
1407                 AVP_TYPE_INTEGER32,
1408                 "Boolean",
1409                 NULL,
1410                 NULL
1411                };
1412         struct dict_enumval_data boolean_false =
1413                {
1414                 .enum_name="False",
1415                 .enum_value.i32 = 0
1416                };
1417         struct dict_enumval_data boolean_true =
1418                {
1419                 .enum_name="True",
1420                 .enum_value.i32 = -1
1421                };
1422         ret = fd_dict_new ( dict, DICT_TYPE, &type_boolean_data, NULL, &type_boolean );
1423         ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_false, type_boolean, NULL );
1424         ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_true , type_boolean, NULL );
1425
1426 }
1427
1428- fd_dict_search:
1429 Sample code to look for a constant name, by its value:
1430 {
1431         int ret;
1432         struct dict_object * value_found;
1433         struct dict_enumval_request boolean_by_value =
1434                {
1435                 .type_name = "Boolean",
1436                 .search.enum_name=NULL,
1437                 .search.enum_value.i32 = -1
1438                };
1439
1440         ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1441 }
1442
1443 - fd_dict_getval:
1444 Sample code to retrieve the data from a constant object:
1445 {
1446         int ret;
1447         struct dict_object * value_found;
1448         struct dict_enumval_data boolean_data = NULL;
1449         struct dict_enumval_request boolean_by_value =
1450                {
1451                 .type_name = "Boolean",
1452                 .search.enum_name=NULL,
1453                 .search.enum_value.i32 = 0
1454                };
1455
1456         ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1457         ret = fd_dict_getval ( value_found, &boolean_data );
1458         printf(" Boolean with value 0: %s", boolean_data.enum_name );
1459 }
1460*/
1461
1462/*
1463 ***************************************************************************
1464 *
1465 * AVP object
1466 *
1467 * These objects are used to manage AVP definitions in the dictionary
1468 *
1469 ***************************************************************************
1470 */
1471
1472/* Type to hold an AVP code. For vendor 0, these codes are assigned by IANA. Otherwise, it is managed by the vendor */
1473typedef uint32_t        avp_code_t;
1474
1475/* Values of AVP flags */
1476#define AVP_FLAG_VENDOR         0x80
1477#define AVP_FLAG_MANDATORY      0x40
1478#define AVP_FLAG_RESERVED3      0x20
1479#define AVP_FLAG_RESERVED4      0x10
1480#define AVP_FLAG_RESERVED5      0x08
1481#define AVP_FLAG_RESERVED6      0x04
1482#define AVP_FLAG_RESERVED7      0x02
1483#define AVP_FLAG_RESERVED8      0x01
1484
1485/* For dumping flags and values */
1486#define DUMP_AVPFL_str  "%c%c%s%s%s%s%s%s"
1487#define DUMP_AVPFL_val(_val) (_val & AVP_FLAG_VENDOR)?'V':'-' , (_val & AVP_FLAG_MANDATORY)?'M':'-',    \
1488                                (_val & AVP_FLAG_RESERVED3)?"3":"", (_val & AVP_FLAG_RESERVED4)?"4":"", \
1489                                (_val & AVP_FLAG_RESERVED5)?"5":"", (_val & AVP_FLAG_RESERVED6)?"6":"", (_val & AVP_FLAG_RESERVED7)?"7":"", (_val & AVP_FLAG_RESERVED8)?"8":""
1490
1491/* Type to hold data associated to an avp */
1492struct dict_avp_data {
1493        avp_code_t               avp_code;      /* Code of the avp */
1494        vendor_id_t              avp_vendor;    /* Vendor of the AVP, or 0 */
1495        char *                   avp_name;      /* Name of this AVP */
1496        uint8_t                  avp_flag_mask; /* Mask of fixed AVP flags */
1497        uint8_t                  avp_flag_val;  /* Values of the fixed flags */
1498        enum dict_avp_basetype   avp_basetype;  /* Basic type of data found in the AVP */
1499};
1500
1501/* The criteria for searching an avp object in the dictionary */
1502enum {
1503        AVP_BY_CODE = 50,       /* "what" points to an avp_code_t, vendor is always 0 */
1504        AVP_BY_NAME,            /* "what" points to a char *, vendor is always 0 */
1505        AVP_BY_NAME_ALL_VENDORS,/* "what" points to a string. Might be quite slow... */
1506        AVP_BY_STRUCT,          /* "what" points to a struct dict_avp_request_ex (see below) */
1507
1508        /* kept for backward compatibility, better use AVP_BY_STRUCT above instead */
1509        AVP_BY_CODE_AND_VENDOR, /* "what" points to a struct dict_avp_request (see below), where avp_vendor and avp_code are set */
1510        AVP_BY_NAME_AND_VENDOR  /* "what" points to a struct dict_avp_request (see below), where avp_vendor and avp_name are set */
1511};
1512
1513/* Struct used for some searches */
1514struct dict_avp_request_ex {
1515        struct {
1516                /* Only one of the following fields must be set. */
1517                struct dict_object *    vendor;         /* most efficient if already known, set to NULL to ignore */
1518                vendor_id_t             vendor_id;      /* set to 0 to ignore -- prefer AVP_BY_CODE or AVP_BY_NAME for vendor 0 */
1519                const char *                    vendor_name;    /* set to NULL to ignore */
1520        } avp_vendor;
1521
1522        struct {
1523                /* Only one of the following fields must be set */
1524                avp_code_t       avp_code; /* set to 0 to ignore */
1525                const char *             avp_name; /* set to NULL to ignore */
1526        } avp_data;
1527};
1528
1529struct dict_avp_request {
1530        vendor_id_t      avp_vendor;
1531        avp_code_t       avp_code;
1532        char *           avp_name;
1533};
1534
1535
1536
1537/***
1538 *  API usage :
1539
1540If "parent" parameter is not NULL during AVP creation, it must point to a DICT_TYPE object.
1541The extended type is then attached to the AVP. In case where it is an enumerated type, the value of
1542AVP is automatically interpreted in debug messages, and in message checks.
1543The derived type of an AVP can be retrieved with: dict_search ( DICT_TYPE, TYPE_OF_AVP, avp, ... )
1544
1545To create the rules (ABNF) for children of Grouped AVP, see the DICT_RULE related part.
1546
1547- fd_dict_new:
1548 Sample code for AVP creation:
1549 {
1550         int ret;
1551         struct dict_object * user_name_avp;
1552         struct dict_object * boolean_type;
1553         struct dict_object * sample_boolean_avp;
1554         struct dict_avp_data user_name_data = {
1555                 1,                                     // code
1556                 0,                                     // vendor
1557                 "User-Name",                           // name
1558                 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY,  // fixed mask: V and M values must always be defined as follow. other flags can be set or cleared
1559                 AVP_FLAG_MANDATORY,                    // the V flag must be cleared, the M flag must be set.
1560                 AVP_TYPE_OCTETSTRING                   // User-Name AVP contains OctetString data (further precision such as UTF8String can be given with a parent derived type)
1561         };
1562         struct dict_avp_data sample_boolean_data = {
1563                 31337,
1564                 23455,
1565                 "Sample-Boolean",
1566                 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY,
1567                 AVP_FLAG_VENDOR,
1568                 AVP_TYPE_INTEGER32                     // This MUST be the same as parent type's
1569         };
1570
1571         -- Create an AVP with a base type --
1572         ret = fd_dict_new ( dict, DICT_AVP, &user_name_data, NULL, &user_name_avp );
1573
1574         -- Create an AVP with a derived type --
1575         ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Boolean", &boolean_type, ENOENT);
1576         ret = fd_dict_new ( dict, DICT_AVP, &sample_boolean_data , boolean_type, &sample_boolean_avp );
1577
1578 }
1579
1580- fd_dict_search:
1581 Sample code to look for an AVP
1582 {
1583         int ret;
1584         struct dict_object * avp_username;
1585         struct dict_object * avp_sampleboolean;
1586         struct dict_avp_request avpvendorboolean =
1587                {
1588                 .avp_vendor = 23455,
1589                 .avp_name   = "Sample-Boolean"
1590                };
1591
1592         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1593
1594         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME_AND_VENDOR, &avpvendorboolean, &avp_sampleboolean, ENOENT);
1595
1596         -- this would also work, but be slower, because it has to search all vendor dictionaries --
1597         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME_ALL_VENDORS, "Sample-Boolean", &avp_sampleboolean, ENOENT);
1598
1599 }
1600
1601 - fd_dict_getval:
1602 Sample code to retrieve the data from an AVP object:
1603 {
1604         int ret;
1605         struct dict_object * avp_username;
1606         struct dict_avp_data user_name_data;
1607         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1608         ret = fd_dict_getval ( avp_username, &user_name_data );
1609         printf("User-Name code: %d\n", user_name_data.avp_code );
1610 }
1611
1612*/
1613
1614/*
1615 ***************************************************************************
1616 *
1617 * Command object
1618 *
1619 * These types are used to manage commands objects in the dictionary
1620 *
1621 ***************************************************************************
1622 */
1623
1624/* Type to hold a Diameter command code: IANA assigned values. 0x0-0x7fffff=standard, 0x800000-0xfffffd=vendors, 0xfffffe-0xffffff=experimental */
1625typedef uint32_t        command_code_t;
1626
1627/* Values of command flags */
1628#define CMD_FLAG_REQUEST        0x80
1629#define CMD_FLAG_PROXIABLE      0x40
1630#define CMD_FLAG_ERROR          0x20
1631#define CMD_FLAG_RETRANSMIT     0x10
1632#define CMD_FLAG_RESERVED5      0x08
1633#define CMD_FLAG_RESERVED6      0x04
1634#define CMD_FLAG_RESERVED7      0x02
1635#define CMD_FLAG_RESERVED8      0x01
1636
1637/* For dumping flags and values */
1638#define DUMP_CMDFL_str  "%c%c%c%c%s%s%s%s"
1639#define DUMP_CMDFL_val(_val) (_val & CMD_FLAG_REQUEST)?'R':'-' , (_val & CMD_FLAG_PROXIABLE)?'P':'-' , (_val & CMD_FLAG_ERROR)?'E':'-' , (_val & CMD_FLAG_RETRANSMIT)?'T':'-', \
1640                                (_val & CMD_FLAG_RESERVED5)?"5":"", (_val & CMD_FLAG_RESERVED6)?"6":"", (_val & CMD_FLAG_RESERVED7)?"7":"", (_val & CMD_FLAG_RESERVED8)?"8":""
1641
1642/* Type to hold data associated to a command */
1643struct dict_cmd_data {
1644        command_code_t   cmd_code;      /* code of the command */
1645        char *           cmd_name;      /* Name of the command */
1646        uint8_t          cmd_flag_mask; /* Mask of fixed-value flags */
1647        uint8_t          cmd_flag_val;  /* values of the fixed flags */
1648};
1649
1650/* The criteria for searching an avp object in the dictionary */
1651enum {
1652        CMD_BY_NAME = 60,       /* "what" points to a char * */
1653        CMD_BY_CODE_R,          /* "what" points to a command_code_t. The "Request" command is returned. */
1654        CMD_BY_CODE_A,          /* "what" points to a command_code_t. The "Answer" command is returned. */
1655        CMD_ANSWER              /* "what" points to a struct dict_object of a request command. The corresponding "Answer" command is returned. */
1656};
1657
1658
1659/***
1660 *  API usage :
1661
1662The "parent" parameter of dict_new may point to an application object to inform of what application defines the command.
1663The application associated to a command is retrieved with APPLICATION_OF_COMMAND search criteria on applications.
1664
1665To create the rules for children of commands, see the DICT_RULE related part.
1666
1667Note that the "Request" and "Answer" commands are two independant objects. This allows to have different rules for each.
1668
1669- fd_dict_new:
1670 Sample code for command creation:
1671 {
1672         int ret;
1673         struct dict_object * cer;
1674         struct dict_object * cea;
1675         struct dict_cmd_data ce_data = {
1676                 257,                                   // code
1677                 "Capabilities-Exchange-Request",       // name
1678                 CMD_FLAG_REQUEST,                      // mask
1679                 CMD_FLAG_REQUEST                       // value. Only the "R" flag is constrained here, set.
1680         };
1681
1682         ret = fd_dict_new (dict,  DICT_COMMAND, &ce_data, NULL, &cer );
1683
1684         ce_data.cmd_name = "Capabilities-Exchange-Answer";
1685         ce_data.cmd_flag_val = 0;                      // Same constraint on "R" flag, but this time it must be cleared.
1686
1687         ret = fd_dict_new ( dict, DICT_COMMAND, &ce_data, NULL, &cea );
1688 }
1689
1690- fd_dict_search:
1691 Sample code to look for a command
1692 {
1693         int ret;
1694         struct dict_object * cer, * cea;
1695         command_code_t code = 257;
1696         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1697         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_CODE_R, &code, &cer, ENOENT);
1698 }
1699
1700 - fd_dict_getval:
1701 Sample code to retrieve the data from a command object:
1702 {
1703         int ret;
1704         struct dict_object * cer;
1705         struct dict_object * cea;
1706         struct dict_cmd_data cea_data;
1707         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1708         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_ANSWER, cer, &cea, ENOENT);
1709         ret = fd_dict_getval ( cea, &cea_data );
1710         printf("Answer to CER: %s\n", cea_data.cmd_name );
1711 }
1712
1713*/
1714
1715/*
1716 ***************************************************************************
1717 *
1718 * Rule object
1719 *
1720 * These objects are used to manage rules in the dictionary (ABNF implementation)
1721 * This is used for checking messages validity (more powerful than a DTD)
1722 *
1723 ***************************************************************************
1724 */
1725
1726/* This defines the kind of rule that is defined */
1727enum rule_position {
1728        RULE_FIXED_HEAD = 1,    /* The AVP must be at the head of the group. The rule_order field is used to specify the position. */
1729        RULE_REQUIRED,          /* The AVP must be present in the parent, but its position is not defined. */
1730        RULE_OPTIONAL,          /* The AVP may be present in the message. Used to specify a max number of occurences for example */
1731        RULE_FIXED_TAIL         /* The AVP must be at the end of the group. The rule_order field is used to specify the position. */
1732};
1733
1734/* Content of a RULE object data */
1735struct dict_rule_data {
1736        struct dict_object      *rule_avp;      /* Pointer to the AVP object that is concerned by this rule */
1737        enum rule_position       rule_position; /* The position in which the rule_avp must appear in the parent */
1738        unsigned                 rule_order;    /* for RULE_FIXED_* rules, the place. 1,2,3.. for HEAD rules; ...,3,2,1 for TAIL rules. */
1739        int                      rule_min;      /* Minimum number of occurences. -1 means "default": 0 for optional rules, 1 for other rules */
1740        int                      rule_max;      /* Maximum number of occurences. -1 means no maximum. 0 means the AVP is forbidden. */
1741};
1742
1743/* The criteria for searching a rule in the dictionary */
1744enum {
1745        RULE_BY_AVP_AND_PARENT = 70     /* "what" points to a struct dict_rule_request -- see below. This is used to query "what is the rule for this AVP in this group?" */
1746};
1747
1748/* Structure for querying the dictionary about a rule */
1749struct dict_rule_request {
1750        struct dict_object      *rule_parent;   /* The grouped avp or command to which the rule apply */
1751        struct dict_object      *rule_avp;      /* The AVP concerned by this rule */
1752};
1753
1754
1755/***
1756 *  API usage :
1757
1758The "parent" parameter can not be NULL. It points to the object (grouped avp or command) to which this rule apply (i.e. for which the ABNF is defined).
1759
1760- fd_dict_new:
1761 Sample code for rule creation. Let's create the Proxy-Info grouped AVP for example.
1762 {
1763        int ret;
1764        struct dict_object * proxy_info_avp;
1765        struct dict_object * proxy_host_avp;
1766        struct dict_object * proxy_state_avp;
1767        struct dict_object * diameteridentity_type;
1768        struct dict_rule_data rule_data;
1769        struct dict_type_data di_type_data = { AVP_TYPE_OCTETSTRING, "DiameterIdentity", NULL, NULL };
1770        struct dict_avp_data proxy_info_data = { 284, 0, "Proxy-Info", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_GROUPED };
1771        struct dict_avp_data proxy_host_data = { 280, 0, "Proxy-Host", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1772        struct dict_avp_data proxy_state_data = { 33, 0, "Proxy-State",AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1773
1774        -- Create the parent AVP
1775        ret = fd_dict_new ( dict, DICT_AVP, &proxy_info_data, NULL, &proxy_info_avp );
1776
1777        -- Create the first child AVP.
1778        ret = fd_dict_new ( dict, DICT_TYPE, &di_type_data, NULL, &diameteridentity_type );
1779        ret = fd_dict_new ( dict, DICT_AVP, &proxy_host_data, diameteridentity_type, &proxy_host_avp );
1780
1781        -- Create the other child AVP
1782        ret = fd_dict_new ( dict, DICT_AVP, &proxy_state_data, NULL, &proxy_state_avp );
1783
1784        -- Now we can create the rules. Both children AVP are mandatory.
1785        rule_data.rule_position = RULE_REQUIRED;
1786        rule_data.rule_min = -1;
1787        rule_data.rule_max = -1;
1788
1789        rule_data.rule_avp = proxy_host_avp;
1790        ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1791
1792        rule_data.rule_avp = proxy_state_avp;
1793        ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1794}
1795
1796- fd_dict_search and fd_dict_getval are similar to previous examples.
1797
1798*/
1799
1800/* Define some hard-coded values */
1801/* Application */
1802#define AI_RELAY                        0xffffffff
1803
1804/* Commands Codes */
1805#define CC_CAPABILITIES_EXCHANGE        257
1806#define CC_RE_AUTH                      258
1807#define CC_ACCOUNTING                   271
1808#define CC_ABORT_SESSION                274
1809#define CC_SESSION_TERMINATION          275
1810#define CC_DEVICE_WATCHDOG              280
1811#define CC_DISCONNECT_PEER              282
1812
1813/* AVPs (Vendor 0) */
1814#define AC_USER_NAME                    1
1815#define AC_PROXY_STATE                  33
1816#define AC_HOST_IP_ADDRESS              257
1817#define AC_AUTH_APPLICATION_ID          258
1818#define AC_ACCT_APPLICATION_ID          259
1819#define AC_VENDOR_SPECIFIC_APPLICATION_ID 260
1820#define AC_REDIRECT_HOST_USAGE          261
1821#define AC_REDIRECT_MAX_CACHE_TIME      262
1822#define AC_SESSION_ID                   263
1823#define AC_ORIGIN_HOST                  264
1824#define AC_SUPPORTED_VENDOR_ID          265
1825#define AC_VENDOR_ID                    266
1826#define AC_FIRMWARE_REVISION            267
1827#define AC_RESULT_CODE                  268
1828#define AC_PRODUCT_NAME                 269
1829#define AC_DISCONNECT_CAUSE             273
1830#define ACV_DC_REBOOTING                        0
1831#define ACV_DC_BUSY                             1
1832#define ACV_DC_NOT_FRIEND                       2
1833#define AC_ORIGIN_STATE_ID              278
1834#define AC_FAILED_AVP                   279
1835#define AC_PROXY_HOST                   280
1836#define AC_ERROR_MESSAGE                281
1837#define AC_ROUTE_RECORD                 282
1838#define AC_DESTINATION_REALM            283
1839#define AC_PROXY_INFO                   284
1840#define AC_REDIRECT_HOST                292
1841#define AC_DESTINATION_HOST             293
1842#define AC_ERROR_REPORTING_HOST         294
1843#define AC_ORIGIN_REALM                 296
1844#define AC_INBAND_SECURITY_ID           299
1845#define ACV_ISI_NO_INBAND_SECURITY              0
1846#define ACV_ISI_TLS                             1
1847
1848/* Error codes from Base protocol
1849(reference: http://www.iana.org/assignments/aaa-parameters/aaa-parameters.xml#aaa-parameters-4)
1850Note that currently, rfc3588bis-26 has some different values for some of these
1851*/
1852#define ER_DIAMETER_MULTI_ROUND_AUTH                    1001
1853
1854#define ER_DIAMETER_SUCCESS                             2001
1855#define ER_DIAMETER_LIMITED_SUCCESS                     2002
1856
1857#define ER_DIAMETER_COMMAND_UNSUPPORTED                 3001 /* 5019 ? */
1858#define ER_DIAMETER_UNABLE_TO_DELIVER                   3002
1859#define ER_DIAMETER_REALM_NOT_SERVED                    3003
1860#define ER_DIAMETER_TOO_BUSY                            3004
1861#define ER_DIAMETER_LOOP_DETECTED                       3005
1862#define ER_DIAMETER_REDIRECT_INDICATION                 3006
1863#define ER_DIAMETER_APPLICATION_UNSUPPORTED             3007
1864#define ER_DIAMETER_INVALID_HDR_BITS                    3008 /* 5020 ? */
1865#define ER_DIAMETER_INVALID_AVP_BITS                    3009 /* 5021 ? */
1866#define ER_DIAMETER_UNKNOWN_PEER                        3010 /* 5018 ? */
1867
1868#define ER_DIAMETER_AUTHENTICATION_REJECTED             4001
1869#define ER_DIAMETER_OUT_OF_SPACE                        4002
1870#define ER_ELECTION_LOST                                4003
1871
1872#define ER_DIAMETER_AVP_UNSUPPORTED                     5001
1873#define ER_DIAMETER_UNKNOWN_SESSION_ID                  5002
1874#define ER_DIAMETER_AUTHORIZATION_REJECTED              5003
1875#define ER_DIAMETER_INVALID_AVP_VALUE                   5004
1876#define ER_DIAMETER_MISSING_AVP                         5005
1877#define ER_DIAMETER_RESOURCES_EXCEEDED                  5006
1878#define ER_DIAMETER_CONTRADICTING_AVPS                  5007
1879#define ER_DIAMETER_AVP_NOT_ALLOWED                     5008
1880#define ER_DIAMETER_AVP_OCCURS_TOO_MANY_TIMES           5009
1881#define ER_DIAMETER_NO_COMMON_APPLICATION               5010
1882#define ER_DIAMETER_UNSUPPORTED_VERSION                 5011
1883#define ER_DIAMETER_UNABLE_TO_COMPLY                    5012
1884#define ER_DIAMETER_INVALID_BIT_IN_HEADER               5013 /* 3011 ? */
1885#define ER_DIAMETER_INVALID_AVP_LENGTH                  5014
1886#define ER_DIAMETER_INVALID_MESSAGE_LENGTH              5015 /* 3012 ? */
1887#define ER_DIAMETER_INVALID_AVP_BIT_COMBO               5016 /* deprecated? */
1888#define ER_DIAMETER_NO_COMMON_SECURITY                  5017
1889
1890
1891/*============================================================*/
1892/*                         SESSIONS                           */
1893/*============================================================*/
1894
1895/* Modules that want to associate a state with a Session-Id must first register a handler of this type */
1896struct session_handler;
1897
1898/* This opaque structure represents a session associated with a Session-Id */
1899struct session;
1900
1901/* The state information that a module associate with a session -- each module defines its own data format */
1902struct sess_state; /* declare this in your own extension */
1903
1904typedef DECLARE_FD_DUMP_PROTOTYPE((*session_state_dump), struct sess_state * st);
1905
1906/* The following function must be called to activate the session expiry mechanism */
1907int fd_sess_start(void);
1908
1909/*
1910 * FUNCTION:    fd_sess_handler_create
1911 *
1912 * PARAMETERS:
1913 *  handler     : location where the new handler must be stored.
1914 *  cleanup     : a callback function that must be called when the session with associated data is destroyed.
1915 *  dumper      : if not NULL, will be called during fd_sess_dump to display the data associated with a session. NULL otherwise.
1916 *  opaque      : A pointer that is passed to the cleanup callback -- the content is never examined by the framework.
1917 *
1918 * DESCRIPTION:
1919 *  Create a new session handler. This is needed by a module to associate a state with a session object.
1920 * The cleanup handler is called when the session timeout expires, or fd_sess_destroy is called. It must free
1921 * the state associated with the session, and eventually trig other actions (send a STR, ...).
1922 *
1923 * RETURN VALUE:
1924 *  0           : The new handler has been created.
1925 *  EINVAL      : A parameter is invalid.
1926 *  ENOMEM      : Not enough memory to complete the operation
1927 */
1928int fd_sess_handler_create ( struct session_handler ** handler, void (*cleanup)(struct sess_state * state, os0_t sid, void * opaque), session_state_dump dumper, void * opaque );
1929
1930
1931/*
1932 * FUNCTION:    fd_sess_handler_destroy
1933 *
1934 * PARAMETERS:
1935 *  handler     : location of an handler created by fd_sess_handler_create.
1936 *  opaque      : the opaque pointer registered with the callback is restored here (if ! NULL).
1937 *
1938 * DESCRIPTION:
1939 *  This destroys a session handler (typically called when an application is shutting down).
1940 * If sessions states are registered with this handler, the cleanup callback is called on them.
1941 *
1942 * RETURN VALUE:
1943 *  0           : The handler was destroyed.
1944 *  EINVAL      : A parameter is invalid.
1945 *  ENOMEM      : Not enough memory to complete the operation
1946 */
1947int fd_sess_handler_destroy ( struct session_handler ** handler, void **opaque );
1948
1949
1950
1951/*
1952 * FUNCTION:    fd_sess_new
1953 *
1954 * PARAMETERS:
1955 *  session       : The location where the session object will be created upon success.
1956 *  diamid        : a Diameter Identity, or NULL.
1957 *  diamidlen     : if diamid is \0-terminated, this can be 0. Otherwise, the length of diamid.
1958 *  opt           : Additional string, or NULL. Usage is described below.
1959 *  optlen        : if opt is \0-terminated, this can be 0. Otherwise, the length of opt.
1960 *
1961 * DESCRIPTION:
1962 *   Create a new session object. The Session-Id string associated with this session is generated as follow:
1963 *  If diamId parameter is provided, the string is created according to the RFC: <diamId>;<high32>;<low32>[;opt] where
1964 *    diamId is a Diameter Identity.
1965 *    high32 and low32 are the parts of a monotonic 64 bits counter initialized to (time, 0) at startup.
1966 *    opt is an optional string that can be concatenated to the identifier.
1967 *  If diamId is NULL, the string is exactly the content of opt.
1968 *
1969 * RETURN VALUE:
1970 *  0           : The session is created, the initial msg refcount is 1.
1971 *  EINVAL      : A parameter is invalid.
1972 *  EALREADY    : A session with the same name already exists (returned in *session), the msg refcount is increased.
1973 *  ENOMEM      : Not enough memory to complete the operation
1974 */
1975int fd_sess_new ( struct session ** session, DiamId_t diamid, size_t diamidlen, uint8_t * opt, size_t optlen );
1976
1977/*
1978 * FUNCTION:    fd_sess_fromsid
1979 *
1980 * PARAMETERS:
1981 *  sid         : pointer to a string containing a Session-Id (should be UTF-8).
1982 *  len         : length of the sid string (which does not need to be '\0'-terminated)
1983 *  session     : On success, pointer to the session object created / retrieved.
1984 *  isnew       : if not NULL, set to 1 on return if the session object has been created, 0 if it was simply retrieved.
1985 *
1986 * DESCRIPTION:
1987 *   Retrieve a session object from a Session-Id string. In case no session object was previously existing with this
1988 *  id, a new object is silently created (equivalent to fd_sess_new with flag SESSION_NEW_FULL).
1989 *
1990 * RETURN VALUE:
1991 *  0           : The session parameter has been updated.
1992 *  EINVAL      : A parameter is invalid.
1993 *  ENOMEM      : Not enough memory to complete the operation
1994 */
1995int fd_sess_fromsid ( uint8_t * sid, size_t len, struct session ** session, int * isnew);
1996
1997/* only use the following in specific situations, e.g. app_radgw extension. They are normally handled by the framework only */
1998int fd_sess_fromsid_msg ( uint8_t * sid, size_t len, struct session ** session, int * isnew);
1999int fd_sess_ref_msg ( struct session * session );
2000
2001/*
2002 * FUNCTION:    fd_sess_getsid
2003 *
2004 * PARAMETERS:
2005 *  session     : Pointer to a session object.
2006 *  sid         : On success, the location of the sid is stored here.
2007 *
2008 * DESCRIPTION:
2009 *   Retrieve the session identifier (Session-Id) corresponding to a session object.
2010 *  The returned sid is a \0-terminated binary string which might be UTF-8 (but there is no guarantee in the framework).
2011 *  It may be used for example to set the value of an AVP.
2012 *  Note that the sid string is not copied, just its reference... do not free it!
2013 *
2014 * RETURN VALUE:
2015 *  0           : The sid & len parameters have been updated.
2016 *  EINVAL      : A parameter is invalid.
2017 */
2018int fd_sess_getsid ( struct session * session, os0_t * sid, size_t * sidlen );
2019
2020/*
2021 * FUNCTION:    fd_sess_settimeout
2022 *
2023 * PARAMETERS:
2024 *  session     : The session for which to set the timeout.
2025 *  timeout     : The date when the session times out.
2026 *
2027 * DESCRIPTION:
2028 *   Set the lifetime for a given session object. This function may be
2029 * called several times on the same object to update the timeout value.
2030 *   When the timeout date is reached, the cleanup handler of each
2031 * module that registered data with this session is called, then the
2032 * session is cleared.
2033 *
2034 *   There is a possible race condition between cleanup of the session
2035 * and use of its data; applications should ensure that they are not
2036 * using data from a session that is about to expire / expired.
2037 *
2038 * RETURN VALUE:
2039 *  0           : The session timeout has been updated.
2040 *  EINVAL      : A parameter is invalid.
2041 */
2042int fd_sess_settimeout( struct session * session, const struct timespec * timeout );
2043
2044/*
2045 * FUNCTION:    fd_sess_destroy
2046 *
2047 * PARAMETERS:
2048 *  session     : Pointer to a session object.
2049 *
2050 * DESCRIPTION:
2051 *   Destroys all associated states of a session, if any.
2052 * Equivalent to a session timeout expired, but the effect is immediate.
2053 * The session itself is marked as deleted, and will be freed when it is not referenced
2054 * by any message anymore.
2055 *
2056 * RETURN VALUE:
2057 *  0           : The session no longer exists.
2058 *  EINVAL      : A parameter is invalid.
2059 */
2060int fd_sess_destroy ( struct session ** session );
2061
2062/*
2063 * FUNCTION:    fd_sess_reclaim
2064 *
2065 * PARAMETERS:
2066 *  session     : Pointer to a session object.
2067 *
2068 * DESCRIPTION:
2069 *   Equivalent to fd_sess_destroy, only if no session_state is associated with the session.
2070 *  Otherwise, this function has no effect (except that it sets *session to NULL).
2071 *
2072 * RETURN VALUE:
2073 *  0           : The session was reclaimed.
2074 *  EINVAL      : A parameter is invalid.
2075 */
2076int fd_sess_reclaim ( struct session ** session );
2077
2078
2079
2080
2081/*
2082 * FUNCTION:    fd_sess_state_store
2083 *
2084 * PARAMETERS:
2085 *  handler     : The handler with which the state is registered.
2086 *  session     : The session object with which the state is registered.
2087 *  state       : An application state (opaque data) to store with the session.
2088 *
2089 * DESCRIPTION:
2090 *  Stores an application state with a session. This state can later be retrieved
2091 * with fd_sess_state_retrieve, or implicitly in the cleanup handler when the session
2092 * is destroyed.
2093 *
2094 * RETURN VALUE:
2095 *  0           : The state has been stored.
2096 *  EINVAL      : A parameter is invalid.
2097 *  EALREADY    : Data was already associated with this session and client.
2098 *  ENOMEM      : Not enough memory to complete the operation
2099 */
2100int fd_sess_state_store ( struct session_handler * handler, struct session * session, struct sess_state ** state );
2101
2102/*
2103 * FUNCTION:    fd_sess_state_retrieve
2104 *
2105 * PARAMETERS:
2106 *  handler     : The handler with which the state was registered.
2107 *  session     : The session object with which the state was registered.
2108 *  state       : Location where the state must be saved if it is found.
2109 *
2110 * DESCRIPTION:
2111 *  Retrieves a state saved by fd_sess_state_store.
2112 * After this function has been called, the state is no longer associated with
2113 * the session. A new call to fd_sess_state_store must be performed in order to
2114 * store again the data with the session.
2115 *
2116 * RETURN VALUE:
2117 *  0           : *state is updated (NULL or points to the state if it was found).
2118 *  EINVAL      : A parameter is invalid.
2119 */
2120int fd_sess_state_retrieve ( struct session_handler * handler, struct session * session, struct sess_state ** state );
2121
2122
2123/* For debug */
2124DECLARE_FD_DUMP_PROTOTYPE(fd_sess_dump, struct session * session, int with_states);
2125DECLARE_FD_DUMP_PROTOTYPE(fd_sess_dump_hdl, struct session_handler * handler);
2126
2127/* For statistics / monitoring: get the number of struct session in memory */
2128int fd_sess_getcount(uint32_t *cnt);
2129
2130/*============================================================*/
2131/*                         ROUTING                            */
2132/*============================================================*/
2133
2134/* The following functions are helpers for the routing module.
2135  The routing data is stored in the message itself. */
2136
2137/* Structure that contains the routing data for a message */
2138struct rt_data;
2139
2140/* Following functions are helpers to create the routing data of a message */
2141int  fd_rtd_init(struct rt_data ** rtd);
2142void fd_rtd_free(struct rt_data ** rtd);
2143
2144/* Add a peer to the candidates list. */
2145int  fd_rtd_candidate_add(struct rt_data * rtd, DiamId_t peerid, size_t peeridlen, DiamId_t realm, size_t realmlen);
2146
2147/* Remove a peer from the candidates (if it is found). The search is case-insensitive. */
2148void fd_rtd_candidate_del(struct rt_data * rtd, uint8_t * id, size_t idsz);
2149
2150/* Extract the list of valid candidates, and initialize their scores to 0 */
2151void fd_rtd_candidate_extract(struct rt_data * rtd, struct fd_list ** candidates, int ini_score);
2152
2153/* If a peer returned a protocol error for this message, save it so that we don't try to send it there again. Optionally retrieve the current list of candidates. */
2154int  fd_rtd_error_add(struct rt_data * rtd, DiamId_t sentto, size_t senttolen, uint8_t * origin, size_t originsz, uint32_t rcode, struct fd_list ** candidates, int * sendingattemtps);
2155
2156/* Only retrieve the number of times this message has been processed by the routing-out mechanism (i.e. number of times it was failed over) */
2157int  fd_rtd_get_nb_attempts(struct rt_data * rtd, int * sendingattemtps);
2158
2159/* The extracted list items have the following structure: */
2160struct rtd_candidate {
2161        struct fd_list  chain;  /* link in the list returned by the previous fcts */
2162        DiamId_t        diamid; /* the diameter Id of the peer */
2163        size_t          diamidlen; /* cached size of the diamid string */
2164        DiamId_t        realm;  /* the diameter realm of the peer */
2165        size_t          realmlen; /* cached size of realm */
2166        int             score;  /* the current routing score for this peer, see fd_rt_out_register definition for details */
2167};
2168
2169/* Reorder the list of peers by score */
2170int  fd_rtd_candidate_reorder(struct fd_list * candidates);
2171
2172/* Note : it is fine for a callback to add a new entry in the candidates list after the list has been extracted. The diamid must then be malloc'd. */
2173/* Beware that this could lead to routing loops */
2174
2175/*============================================================*/
2176/*                         MESSAGES                           */
2177/*============================================================*/
2178
2179/* The following types are opaque */
2180struct  msg;    /* A message: command with children AVPs (possibly grand children) */
2181struct  avp;    /* AVP object */
2182
2183/* Some details about chaining:
2184 *
2185 *  A message is made of a header ( msg ) and 0 or more AVPs ( avp ).
2186 * The structure is a kind of tree, where some AVPs (grouped AVPs) can contain other AVPs.
2187 * Example:
2188 * msg
2189 *  |-avp
2190 *  |-gavp
2191 *  |   |-avp
2192 *  |   |-avp
2193 *  |   \-avp
2194 *  |-avp
2195 *  \-avp
2196 *
2197 */
2198
2199/* The following type is used to point to either a msg or an AVP */
2200typedef void msg_or_avp;
2201
2202/* The Diameter protocol version */
2203#define DIAMETER_VERSION        1
2204
2205/* In the two following types, some fields are marked (READONLY).
2206 * This means that the content of these fields will be overwritten by the daemon so modifying it is useless.
2207 */
2208
2209/* The following structure represents the header of a message. All data is in host byte order. */
2210struct msg_hdr {
2211        uint8_t          msg_version;           /* (READONLY) Version of Diameter: must be DIAMETER_VERSION. */
2212        uint32_t         msg_length;            /* (READONLY)(3 bytes) indicates the length of the message */
2213        uint8_t          msg_flags;             /* Message flags: CMD_FLAG_* */
2214        command_code_t   msg_code;              /* (3 bytes) the command-code. See dictionary-api.h for more detail */
2215        application_id_t msg_appl;              /* The application issuing this message */
2216        uint32_t         msg_hbhid;             /* The Hop-by-Hop identifier of the message */
2217        uint32_t         msg_eteid;             /* The End-to-End identifier of the message */
2218};
2219
2220/* The following structure represents the visible content of an AVP. All data is in host byte order. */
2221struct avp_hdr {
2222        avp_code_t       avp_code;              /* the AVP Code */
2223        uint8_t          avp_flags;             /* AVP_FLAG_* flags */
2224        uint32_t         avp_len;               /* (READONLY)(Only 3 bytes are used) the length of the AVP as described in the RFC */
2225        vendor_id_t      avp_vendor;            /* Only used if AVP_FLAG_VENDOR is present */
2226        union avp_value *avp_value;             /* pointer to the value of the AVP. NULL means that the value is not set / not understood.
2227                                                   One should not directly change this value. Use the msg_avp_setvalue function instead.
2228                                                   The content of the pointed structure can be changed directly, with this restriction:
2229                                                     if the AVP is an OctetString, and you change the value of the pointer avp_value->os.data, then
2230                                                     you must call free() on the previous value, and the new one must be free()-able.
2231                                                 */
2232};
2233
2234/* The following enum is used to browse inside message hierarchy (msg, gavp, avp) */
2235enum msg_brw_dir {
2236        MSG_BRW_NEXT = 1,       /* Get the next element at the same level, or NULL if this is the last element. */
2237        MSG_BRW_PREV,           /* Get the previous element at the same level, or NULL if this is the first element. */
2238        MSG_BRW_FIRST_CHILD,    /* Get the first child AVP of this element, if any. */
2239        MSG_BRW_LAST_CHILD,     /* Get the last child AVP of this element, if any. */
2240        MSG_BRW_PARENT,         /* Get the parent element of this element, if any. Only the msg_t object has no parent. */
2241        MSG_BRW_WALK            /* This is equivalent to FIRST_CHILD or NEXT or PARENT->next, first that is not NULL. Use this to walk inside all AVPs. */
2242};
2243
2244/* Some flags used in the functions below */
2245#define AVPFL_SET_BLANK_VALUE      0x01 /* When creating an AVP, initialize its value to a blank area */
2246#define AVPFL_SET_RAWDATA_FROM_AVP 0x02 /* When creating an AVP, initialize its rawdata area from an existing AVP -- it is only blank padding (for error reporting) */
2247#define AVPFL_MAX                  AVPFL_SET_RAWDATA_FROM_AVP   /* The biggest valid flag value */
2248
2249#define MSGFL_ALLOC_ETEID       0x01    /* When creating a message, a new end-to-end ID is allocated and set in the message */
2250#define MSGFL_ANSW_ERROR        0x02    /* When creating an answer message, set the 'E' bit and use the generic error ABNF instead of command-specific ABNF */
2251#define MSGFL_ANSW_NOSID        0x04    /* When creating an answer message, do not add the Session-Id even if present in request */
2252#define MSGFL_ANSW_NOPROXYINFO  0x08    /* When creating an answer message, do not add the Proxy-Info AVPs presents in request */
2253#define MSGFL_MAX               MSGFL_ANSW_NOPROXYINFO  /* The biggest valid flag value */
2254
2255/**************************************************/
2256/*   Message creation, manipulation, disposal     */
2257/**************************************************/
2258/*
2259 * FUNCTION:    fd_msg_avp_new
2260 *
2261 * PARAMETERS:
2262 *  model       : Pointer to a DICT_AVP dictionary object describing the avp to create, or NULL if flags are used.
2263 *  flags       : Flags to use in creation (AVPFL_*, see above).
2264 *  avp         : Upon success, pointer to the new avp is stored here. It points to reference AVP upon function call when flags are used.
2265 *
2266 * DESCRIPTION:
2267 *   Create a new AVP instance.
2268 *
2269 * RETURN VALUE:
2270 *  0           : The AVP is created.
2271 *  EINVAL      : A parameter is invalid.
2272 *  (other standard errors may be returned, too, with their standard meaning. Example:
2273 *    ENOMEM    : Memory allocation for the new avp failed.)
2274 */
2275int fd_msg_avp_new ( struct dict_object * model, int flags, struct avp ** avp );
2276
2277/*
2278 * FUNCTION:    fd_msg_new
2279 *
2280 * PARAMETERS:
2281 *  model       : Pointer to a DICT_COMMAND dictionary object describing the message to create, or NULL.
2282 *  flags       : combination of MSGFL_* flags.
2283 *  msg         : Upon success, pointer to the new message is stored here.
2284 *
2285 * DESCRIPTION:
2286 *   Create a new empty Diameter message.
2287 *
2288 * RETURN VALUE:
2289 *  0           : The message is created.
2290 *  EINVAL      : A parameter is invalid.
2291 *  (other standard errors may be returned, too, with their standard meaning. Example:
2292 *    ENOMEM    : Memory allocation for the new message failed.)
2293 */
2294int fd_msg_new ( struct dict_object * model, int flags, struct msg ** msg );
2295
2296/*
2297 * FUNCTION:    msg_new_answer_from_req
2298 *
2299 * PARAMETERS:
2300 *  dict        : Pointer to the dictionary containing the model of the query.
2301 *  msg         : The location of the query on function call. Updated by the location of answer message on return.
2302 *  flag        : Pass MSGFL_ANSW_ERROR to indicate if the answer is an error message (will set the 'E' bit)
2303 *              : See other MSGFL_ANSW_* definition above for other flags.
2304 *
2305 * DESCRIPTION:
2306 *   This function creates the empty answer message corresponding to a request.
2307 *  The header is set properly (R flag, ccode, appid, hbhid, eteid)
2308 *  The Session-Id AVP is copied if present.
2309 *  The calling code should usually call fd_msg_rescode_set function on the answer.
2310 *  Upon return, the original query may be retrieved by calling fd_msg_answ_getq on the message.
2311 *
2312 * RETURN VALUE:
2313 *  0           : Operation complete.
2314 *  !0          : an error occurred.
2315 */
2316int fd_msg_new_answer_from_req ( struct dictionary * dict, struct msg ** msg, int flag );
2317
2318/*
2319 * FUNCTION:    fd_msg_browse
2320 *
2321 * PARAMETERS:
2322 *  reference   : Pointer to a struct msg or struct avp.
2323 *  dir         : Direction for browsing
2324 *  found       : If not NULL, updated with the element that has been found, if any, or NULL if no element was found / an error occurred.
2325 *  depth       : If not NULL, points to an integer representing the "depth" of this object in the tree. This is a relative value, updated on return.
2326 *
2327 * DESCRIPTION:
2328 *   Explore the content of a message object (hierarchy). If "found" is null, only error checking is performed.
2329 *  If "depth" is provided, it is updated as follow on successful function return:
2330 *   - not modified for MSG_BRW_NEXT and MSG_BRW_PREV.
2331 *   - *depth = *depth + 1 for MSG_BRW_FIRST_CHILD and MSG_BRW_LAST_CHILD.
2332 *   - *depth = *depth - 1 for MSG_BRW_PARENT.
2333 *   - *depth = *depth + X for MSG_BRW_WALK, with X between 1 (returned the 1st child) and -N (returned the Nth parent's next).
2334 *
2335 * RETURN VALUE:
2336 *  0           : found has been updated (if non NULL).
2337 *  EINVAL      : A parameter is invalid.
2338 *  ENOENT      : No element has been found where requested, and "found" was NULL (otherwise, *found is set to NULL and 0 is returned).
2339 */
2340int fd_msg_browse_internal ( msg_or_avp * reference, enum msg_brw_dir dir, msg_or_avp ** found, int * depth );
2341/* Macro to avoid having to cast the third parameter everywhere */
2342#define fd_msg_browse( ref, dir, found, depth ) \
2343        fd_msg_browse_internal( (ref), (dir), (void *)(found), (depth) )
2344
2345
2346/*
2347 * FUNCTION:    fd_msg_avp_add
2348 *
2349 * PARAMETERS:
2350 *  reference   : Pointer to a valid msg or avp.
2351 *  dir         : location where the new AVP should be inserted, relative to the reference. MSG_BRW_PARENT and MSG_BRW_WALK are not valid.
2352 *  avp         : pointer to the AVP object that must be inserted.
2353 *
2354 * DESCRIPTION:
2355 *   Adds an AVP into an object that can contain it: grouped AVP or message.
2356 * Note that the added AVP will be freed at the same time as the object it is added to,
2357 * so it should not be freed after the call to this function.
2358 *
2359 * RETURN VALUE:
2360 *  0           : The AVP has been added.
2361 *  EINVAL      : A parameter is invalid.
2362 */
2363int fd_msg_avp_add ( msg_or_avp * reference, enum msg_brw_dir dir, struct avp *avp);
2364
2365/*
2366 * FUNCTION:    fd_msg_search_avp
2367 *
2368 * PARAMETERS:
2369 *  reference   : Pointer to a valid msg or avp in which to search the AVP.
2370 *  what        : The dictionary model of the AVP to search.
2371 *  avp         : location where the AVP reference is stored if found.
2372 *
2373 * DESCRIPTION:
2374 *   Search for the first top-level AVP of a given model inside a message or AVP.
2375 * Note: only the first instance of the AVP is returned by this function.
2376 * Note: only top-level AVPs are searched, not inside grouped AVPs.
2377 * Use msg_browse if you need more advanced search features.
2378 *
2379 * RETURN VALUE:
2380 *  0           : The AVP has been found.
2381 *  EINVAL      : A parameter is invalid.
2382 *  ENOENT      : No AVP has been found, and "avp" was NULL (otherwise, *avp is set to NULL and 0 returned).
2383 */
2384int fd_msg_search_avp ( msg_or_avp * reference, struct dict_object * what, struct avp ** avp );
2385
2386/*
2387 * FUNCTION:    fd_msg_free
2388 *
2389 * PARAMETERS:
2390 *  object      : pointer to the message or AVP object that must be unlinked and freed.
2391 *
2392 * DESCRIPTION:
2393 *   Unlink and free a message or AVP object and its children.
2394 *  If the object is an AVP linked into a message, the AVP is removed before being freed.
2395 *
2396 * RETURN VALUE:
2397 *  0           : The message has been freed.
2398 *  EINVAL      : A parameter is invalid.
2399 */
2400int fd_msg_free ( msg_or_avp * object );
2401
2402/***************************************/
2403/*   Dump functions                    */
2404/***************************************/
2405/*
2406 * FUNCTION:    fd_msg_dump_*
2407 *
2408 * PARAMETERS:
2409 *  see definition of DECLARE_FD_DUMP_PROTOTYPE,
2410 *  obj          : A msg or avp object to dump.
2411 *  dict         : the dictionary to use if parsing is requested (optional)
2412 *  force_parsing: by default these functions do not parse the object but dump hexa values in that case.
2413 *                 use !0 to force parsing. If parsing fails, the hexa dump is still provided.
2414 *  recurse      : allow the function to go through the children objects if any to dump more information. might require parsing.
2415 *
2416 * DESCRIPTION:
2417 *   These functions dump the content of a message or avp into a buffer
2418 * either recursively or only the object itself.
2419 *
2420 * RETURN VALUE:
2421 *   - see DECLARE_FD_DUMP_PROTOTYPE,
2422 */
2423/* one-line dump with only short information */
2424DECLARE_FD_DUMP_PROTOTYPE( fd_msg_dump_summary, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse );
2425/* one-line dump with all the contents of the message */
2426DECLARE_FD_DUMP_PROTOTYPE( fd_msg_dump_full, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse );
2427/* multi-line human-readable dump similar to wireshark output */
2428DECLARE_FD_DUMP_PROTOTYPE( fd_msg_dump_treeview, msg_or_avp *obj, struct dictionary *dict, int force_parsing, int recurse );
2429
2430
2431/*********************************************/
2432/*   Message metadata management functions   */
2433/*********************************************/
2434/*
2435 * FUNCTION:    fd_msg_model
2436 *
2437 * PARAMETERS:
2438 *  reference   : Pointer to a valid msg or avp.
2439 *  model       : on success, pointer to the dictionary model of this command or AVP. NULL if the model is unknown.
2440 *
2441 * DESCRIPTION:
2442 *   Retrieve the dictionary object describing this message or avp. If the object is unknown or the fd_msg_parse_dict has not been called,
2443 *  *model is set to NULL.
2444 *
2445 * RETURN VALUE:
2446 *  0           : The model has been set.
2447 *  EINVAL      : A parameter is invalid.
2448 */
2449int fd_msg_model ( msg_or_avp * reference, struct dict_object ** model );
2450
2451/*
2452 * FUNCTION:    fd_msg_hdr
2453 *
2454 * PARAMETERS:
2455 *  msg         : Pointer to a valid message object.
2456 *  pdata       : Upon success, pointer to the msg_hdr structure of this message. The fields may be modified.
2457 *
2458 * DESCRIPTION:
2459 *   Retrieve location of modifiable section of a message.
2460 *
2461 * RETURN VALUE:
2462 *  0           : The location has been written.
2463 *  EINVAL      : A parameter is invalid.
2464 */
2465int fd_msg_hdr ( struct msg *msg, struct msg_hdr ** pdata );
2466
2467/*
2468 * FUNCTION:    fd_msg_avp_hdr
2469 *
2470 * PARAMETERS:
2471 *  avp         : Pointer to a valid avp object.
2472 *  pdata       : Upon success, pointer to the avp_hdr structure of this avp. The fields may be modified.
2473 *
2474 * DESCRIPTION:
2475 *   Retrieve location of modifiable data of an avp.
2476 *
2477 * RETURN VALUE:
2478 *  0           : The location has been written.
2479 *  EINVAL      : A parameter is invalid.
2480 */
2481int fd_msg_avp_hdr ( struct avp *avp, struct avp_hdr ** pdata );
2482
2483/*
2484 * FUNCTION:    fd_msg_answ_associate, fd_msg_answ_getq, fd_msg_answ_detach
2485 *
2486 * PARAMETERS:
2487 *  answer      : the received answer message
2488 *  query       : the corresponding query that had been sent
2489 *
2490 * DESCRIPTION:
2491 *  fd_msg_answ_associate associates a query msg with the received answer.
2492 * Query is retrieved with fd_msg_answ_getq.
2493 * If answer message is freed, the query is also freed.
2494 * If the msg_answ_detach function is called, the association is removed.
2495 * This is meant to be called from the daemon only.
2496 *
2497 * RETURN VALUE:
2498 *  0     : ok
2499 *  EINVAL: a parameter is invalid
2500 */
2501int fd_msg_answ_associate( struct msg * answer, struct msg * query );
2502int fd_msg_answ_getq     ( struct msg * answer, struct msg ** query );
2503int fd_msg_answ_detach   ( struct msg * answer );
2504
2505/*
2506 * FUNCTION:    fd_msg_anscb_associate, fd_msg_anscb_get
2507 *
2508 * PARAMETERS:
2509 *  msg         : the request message
2510 *  anscb       : the callback to associate with the message
2511 *  data        : the data to pass to the callback
2512 *  expirecb    : the expiration callback to associate with the message
2513 *  timeout     : (optional, use NULL if no timeout) a timeout associated with calling the cb.
2514 *
2515 * DESCRIPTION:
2516 *  Associate or retrieve callbacks with an message.
2517 * This is meant to be called from the daemon only.
2518 *
2519 * RETURN VALUE:
2520 *  0     : ok
2521 *  EINVAL: a parameter is invalid
2522 */
2523int fd_msg_anscb_associate( struct msg * msg, void ( *anscb)(void *, struct msg **), void  * data, void (*expirecb)(void *, DiamId_t, size_t, struct msg **), const struct timespec *timeout );
2524int fd_msg_anscb_get( struct msg * msg, void (**anscb)(void *, struct msg **), void (**expirecb)(void *, DiamId_t, size_t, struct msg **), void ** data );
2525int fd_msg_anscb_reset(struct msg * msg, int clear_anscb, int clear_expirecb);
2526struct timespec *fd_msg_anscb_gettimeout( struct msg * msg ); /* returns NULL or a valid non-0 timespec */
2527
2528/*
2529 * FUNCTION:    fd_msg_rt_associate, fd_msg_rt_get
2530 *
2531 * PARAMETERS:
2532 *  msg         : the query message to be sent
2533 *  list        : the ordered list of possible next-peers
2534 *
2535 * DESCRIPTION:
2536 *  Associate a routing list with a query, and retrieve it.
2537 * If the message is freed, the list is also freed.
2538 *
2539 * RETURN VALUE:
2540 *  0     : ok
2541 *  EINVAL: a parameter is invalid
2542 */
2543int fd_msg_rt_associate( struct msg * msg, struct rt_data * rtd );
2544int fd_msg_rt_get      ( struct msg * msg, struct rt_data ** rtd );
2545
2546/*
2547 * FUNCTION:    fd_msg_is_routable
2548 *
2549 * PARAMETERS:
2550 *  msg         : A msg object.
2551 *
2552 * DESCRIPTION:
2553 *   This function returns a boolean telling if a given message is routable in the Diameter network,
2554 *  or if it is a local link message only (ex: CER/CEA, DWR/DWA, ...).
2555 *
2556 * RETURN VALUE:
2557 *  0           : The message is not routable / an error occurred.
2558 *  1           : The message is routable.
2559 */
2560int fd_msg_is_routable ( struct msg * msg );
2561
2562/*
2563 * FUNCTION:    fd_msg_source_(g/s)et
2564 *
2565 * PARAMETERS:
2566 *  msg         : A msg object.
2567 *  diamid,len  : The diameter id of the peer from which this message was received.
2568 *  dict        : a dictionary with definition of Route-Record AVP (for fd_msg_source_setrr)
2569 *
2570 * DESCRIPTION:
2571 *   Store or retrieve the diameted id of the peer from which this message was received.
2572 * Will be used for example by the routing module to add the Route-Record AVP in forwarded requests,
2573 * or to direct answers to the appropriate peer.
2574 *
2575 * RETURN VALUE:
2576 *  0           : Operation complete.
2577 *  !0          : an error occurred.
2578 */
2579int fd_msg_source_set( struct msg * msg, DiamId_t diamid, size_t diamidlen );
2580int fd_msg_source_setrr( struct msg * msg, DiamId_t diamid, size_t diamidlen, struct dictionary * dict );
2581int fd_msg_source_get( struct msg * msg, DiamId_t *diamid, size_t * diamidlen );
2582
2583/*
2584 * FUNCTION:    fd_msg_eteid_get
2585 *
2586 * PARAMETERS:
2587 *  -
2588 *
2589 * DESCRIPTION:
2590 *   Get a new unique end-to-end id value for the local peer.
2591 *
2592 * RETURN VALUE:
2593 *  The new assigned value. No error code is defined.
2594 */
2595uint32_t fd_msg_eteid_get ( void );
2596
2597
2598/*
2599 * FUNCTION:    fd_msg_sess_get
2600 *
2601 * PARAMETERS:
2602 *  dict        : the dictionary that contains the Session-Id AVP definition
2603 *  msg         : A valid message.
2604 *  session     : Location to store the session pointer when retrieved.
2605 *  isnew       : Indicates if the session has been created.
2606 *
2607 * DESCRIPTION:
2608 *  This function retrieves or creates the session object corresponding to a message.
2609 * If the message does not contain a Session-Id AVP, *session == NULL on return.
2610 * Note that the Session-Id AVP must never be modified after created in a message.
2611 *
2612 * RETURN VALUE:
2613 *  0 : success
2614 * !0 : standard error code.
2615 */
2616int fd_msg_sess_get(struct dictionary * dict, struct msg * msg, struct session ** session, int * isnew);
2617
2618/* This one is used by the libfdcore, you should use fd_msg_new_session rather than fd_sess_new, when possible */
2619int fd_msg_sess_set(struct msg * msg, struct session * session);
2620
2621
2622/* Helper for the hooks mechanism, for use from libfdcore */
2623struct fd_msg_pmdl {
2624        struct fd_list sentinel; /* if the sentinel.o field is NULL, the structure is not initialized. Otherwise it points to the cleanup function in libfdcore. */
2625        pthread_mutex_t lock;
2626};
2627struct fd_msg_pmdl * fd_msg_pmdl_get(struct msg * msg);
2628
2629
2630/***************************************/
2631/*   Manage AVP values                 */
2632/***************************************/
2633
2634/*
2635 * FUNCTION:    fd_msg_avp_setvalue
2636 *
2637 * PARAMETERS:
2638 *  avp         : Pointer to a valid avp object with a NULL avp_value pointer. The model must be known.
2639 *  value       : pointer to an avp_value. The content will be COPIED into the internal storage area.
2640 *               If data type is an octetstring, the data is also copied.
2641 *               If value is a NULL pointer, the previous data is erased and value is unset in the AVP.
2642 *
2643 * DESCRIPTION:
2644 *   Initialize the avp_value field of an AVP header.
2645 *
2646 * RETURN VALUE:
2647 *  0           : The avp_value pointer has been set.
2648 *  EINVAL      : A parameter is invalid.
2649 */
2650int fd_msg_avp_setvalue ( struct avp *avp, union avp_value *value );
2651
2652/*
2653 * FUNCTION:    fd_msg_avp_value_encode
2654 *
2655 * PARAMETERS:
2656 *  avp         : Pointer to a valid avp object with a NULL avp_value. The model must be known.
2657 *  data        : Pointer to the data that must be encoded as AVP value and stored in the AVP.
2658 *               This is only valid for AVPs of derived type for which type_data_encode callback is set. (ex: Address type)
2659 *
2660 * DESCRIPTION:
2661 *   Initialize the avp_value field of an AVP object from formatted data, using the AVP's type "type_data_encode" callback.
2662 *
2663 * RETURN VALUE:
2664 *  0           : The avp_value has been set.
2665 *  EINVAL      : A parameter is invalid.
2666 *  ENOTSUP     : There is no appropriate callback registered with this AVP's type.
2667 */
2668int fd_msg_avp_value_encode ( void *data, struct avp *avp );
2669/*
2670 * FUNCTION:    fd_msg_avp_value_interpret
2671 *
2672 * PARAMETERS:
2673 *  avp         : Pointer to a valid avp object with a non-NULL avp_value value.
2674 *  data        : Upon success, formatted interpretation of the AVP value is stored here.
2675 *
2676 * DESCRIPTION:
2677 *   Interpret the content of an AVP of Derived type and store the result in data pointer. The structure
2678 * of the data pointer is dependent on the AVP type. This function calls the "type_data_interpret" callback
2679 * of the type.
2680 *
2681 * RETURN VALUE:
2682 *  0           : The avp_value has been set.
2683 *  EINVAL      : A parameter is invalid.
2684 *  ENOTSUP     : There is no appropriate callback registered with this AVP's type.
2685 */
2686int fd_msg_avp_value_interpret ( struct avp *avp, void *data );
2687
2688
2689/***************************************/
2690/*   Message parsing functions         */
2691/***************************************/
2692
2693/*
2694 * FUNCTION:    fd_msg_bufferize
2695 *
2696 * PARAMETERS:
2697 *  msg         : A valid msg object. All AVPs must have a value set.
2698 *  buffer      : Upon success, this points to a buffer (malloc'd) containing the message ready for network transmission (or security transformations).
2699 *               The buffer may be freed after use.
2700 *  len         : if not NULL, the size of the buffer is written here. In any case, this size is updated in the msg header.
2701 *
2702 * DESCRIPTION:
2703 *   Renders a message in memory as a buffer that can be sent over the network to the next peer.
2704 *
2705 * RETURN VALUE:
2706 *  0           : The location has been written.
2707 *  EINVAL      : The buffer does not contain a valid Diameter message.
2708 *  ENOMEM      : Unable to allocate enough memory to create the buffer object.
2709 */
2710int fd_msg_bufferize ( struct msg * msg, uint8_t ** buffer, size_t * len );
2711
2712/*
2713 * FUNCTION:    fd_msg_parse_buffer
2714 *
2715 * PARAMETERS:
2716 *  buffer      : Pointer to a buffer containing a message received from the network.
2717 *  buflen      : the size in bytes of the buffer.
2718 *  msg         : Upon success, this points to a valid msg object. No AVP value is resolved in this object, nor grouped AVP.
2719 *
2720 * DESCRIPTION:
2721 *   This function parses a buffer an creates a msg object to represent the structure of the message.
2722 *  Since no dictionary lookup is performed, the values of the AVPs are not interpreted. To interpret the values,
2723 *  the returned message object must be passed to fd_msg_parse_dict function.
2724 *  The buffer pointer is saved inside the message and will be freed when not needed anymore.
2725 *
2726 * RETURN VALUE:
2727 *  0           : The location has been written.
2728 *  ENOMEM      : Unable to allocate enough memory to create the msg object.
2729 *  EBADMSG     : The buffer does not contain a valid Diameter message (or is truncated).
2730 *  EINVAL      : A parameter is invalid.
2731 */
2732int fd_msg_parse_buffer ( uint8_t ** buffer, size_t buflen, struct msg ** msg );
2733
2734/* Parsing Error Information structure */
2735struct fd_pei {
2736        char *          pei_errcode;    /* name of the error code to use */
2737        struct avp *    pei_avp;        /* pointer to invalid (in original message) or missing AVP (to be freed) */
2738        int             pei_avp_free;   /* Set to 1 if the pei_avp must be freed */
2739        char *          pei_message;    /* Overwrite default message if needed */
2740        int             pei_protoerr;   /* do we set the 'E' bit in the error message ? */
2741};
2742
2743/*
2744 * FUNCTION:    fd_msg_parse_dict
2745 *
2746 * PARAMETERS:
2747 *  object      : A msg or AVP object as returned by fd_msg_parse_buffer.
2748 *  dict        : the dictionary containing the objects definitions to use for resolving all AVPs.
2749 *  error_info  : If not NULL, will contain the detail about error upon return. May be used to generate an error reply.
2750 *
2751 * DESCRIPTION:
2752 *   This function looks up for the command and each children AVP definitions in the dictionary.
2753 *  If the dictionary definition is found, avp_model is set and the value of the AVP is interpreted accordingly and:
2754 *   - for grouped AVPs, the children AVP are created and interpreted also.
2755 *   - for numerical AVPs, the value is converted to host byte order and saved in the avp_value field.
2756 *   - for octetstring AVPs, the string is copied into a new buffer and its address is saved in avp_value.
2757 *  If the dictionary definition is not found, avp_model is set to NULL and
2758 *  the content of the AVP is saved as an octetstring in an internal structure. avp_value is NULL.
2759 *  As a result, after this function has been called, there is no more dependency of the msg object to the message buffer, that is freed.
2760 *
2761 * RETURN VALUE:
2762 *  0           : The message has been fully parsed as described.
2763 *  EINVAL      : The msg parameter is invalid for this operation.
2764 *  ENOMEM      : Unable to allocate enough memory to complete the operation.
2765 *  ENOTSUP     : No dictionary definition for the command or one of the mandatory AVP was found.
2766 */
2767int fd_msg_parse_dict ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info );
2768
2769/*
2770 * FUNCTION:    fd_msg_parse_rules
2771 *
2772 * PARAMETERS:
2773 *  object      : A msg or grouped avp object that must be verified.
2774 *  dict        : The dictionary containing the rules definitions.
2775 *  error_info  : If not NULL, the first problem information will be saved here.
2776 *
2777 * DESCRIPTION:
2778 *   Check that the children of the object do not conflict with the dictionary rules (ABNF compliance).
2779 *
2780 * RETURN VALUE:
2781 *  0           : The message has been fully parsed and complies to the defined rules.
2782 *  EBADMSG     : A conflict was detected, or a mandatory AVP is unknown in the dictionary.
2783 *  EINVAL      : The msg or avp object is invalid for this operation.
2784 *  ENOMEM      : Unable to allocate enough memory to complete the operation.
2785 */
2786int fd_msg_parse_rules ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info);
2787
2788
2789
2790/*
2791 * FUNCTION:    fd_msg_update_length
2792 *
2793 * PARAMETERS:
2794 *  object      : Pointer to a valid msg or avp.
2795 *
2796 * DESCRIPTION:
2797 *   Update the length field of the object passed as parameter.
2798 * As a side effect, all children objects are also updated. Therefore, all avp_value fields of
2799 * the children AVPs must be set, or an error will occur.
2800 *
2801 * RETURN VALUE:
2802 *  0           : The size has been recomputed.
2803 *  EINVAL      : A parameter is invalid.
2804 */
2805int fd_msg_update_length ( msg_or_avp * object );
2806
2807
2808/*============================================================*/
2809/*                         DISPATCH                           */
2810/*============================================================*/
2811
2812/* Dispatch module (passing incoming messages to extensions registered callbacks)
2813 * is split between the library and the daemon.
2814 *
2815 * The library provides the support for associating dispatch callbacks with
2816 * dictionary objects.
2817 *
2818 * The daemon is responsible for calling the callbacks for a message when appropriate.
2819 *
2820 *
2821 * The dispatch module has two main roles:
2822 *  - help determine if a message can be handled locally (during the routing step)
2823 *        This decision involves only the application-id of the message.
2824 *  - pass the message to the callback(s) that will handle it (during the dispatch step)
2825 *
2826 * The first role is handled by the daemon.
2827 *
2828 * About the second, these are the possibilities for registering a dispatch callback:
2829 *
2830 * -> For All messages.
2831 *  This callback is called for all messages that are handled locally. This should be used only
2832 *  for debug purpose.
2833 *
2834 * -> by AVP value (constants only).
2835 *  This callback will be called when a message is received and contains an AVP with a specified enumerated value.
2836 *
2837 * -> by AVP.
2838 *  This callback will be called when the received message contains a certain AVP.
2839 *
2840 * -> by command-code.
2841 *  This callback will be called when the message is a specific command (and 'R' flag).
2842 *
2843 * -> by application.
2844 *  This callback will be called when the message has a specific application-id.
2845 *
2846 * ( by vendor: would this be useful? it may be added later)
2847 */
2848enum disp_how {
2849        DISP_HOW_ANY = 1,               /* Any message. This should be only used for debug. */
2850        DISP_HOW_APPID,                 /* Any message with the specified application-id */
2851        DISP_HOW_CC,                    /* Messages of the specified command-code (request or answer). App id may be specified. */
2852        DISP_HOW_AVP,                   /* Messages containing a specific AVP. Command-code and App id may be specified. */
2853        DISP_HOW_AVP_ENUMVAL            /* Messages containing a specific AVP with a specific enumerated value. Command-code and App id may be specified. */
2854};
2855/*
2856 * Several criteria may be selected at the same time, for example command-code AND application id.
2857 *
2858 * If several callbacks are registered for the same object, they are called in the order they were registered.
2859 * The order in which the callbacks are called is:
2860 *  DISP_HOW_ANY
2861 *  DISP_HOW_AVP_ENUMVAL & DISP_HOW_AVP
2862 *  DISP_HOW_CC
2863 *  DISP_HOW_APPID
2864 */
2865
2866/* When a callback is registered, a "when" argument is passed in addition to the disp_how value,
2867 * to specify which values the criteria must match. */
2868struct disp_when {
2869        struct dict_object *    app;
2870        struct dict_object *    command;
2871        struct dict_object *    avp;
2872        struct dict_object *    value;
2873};
2874
2875/* Note that all the dictionary objects should really belong to the same dictionary!
2876 *
2877 * Here is the details on this "when" argument, depending on the disp_how value.
2878 *
2879 * DISP_HOW_ANY.
2880 *  In this case, "when" must be NULL.
2881 *
2882 * DISP_HOW_APPID.
2883 *  Only the "app_id" field must be set, other fields are ignored. It points to a dictionary object of type DICT_APPLICATION.
2884 *
2885 * DISP_HOW_CC.
2886 *  The "command" field must be defined and point to a dictionary object of type DICT_COMMAND.
2887 *  The "app_id" may be also set. In the case it is set, it restricts the callback to be called only with this command-code and app id.
2888 *  The other fields are ignored.
2889 *
2890 * DISP_HOW_AVP.
2891 *  The "avp" field of the structure must be set and point to a dictionary object of type DICT_AVP.
2892 *  The "app_id" field may be set to restrict the messages matching to a specific app id.
2893 *  The "command" field may also be set to a valid DICT_COMMAND object.
2894 *  The content of the "value" field is ignored.
2895 *
2896 * DISP_HOW_AVP_ENUMVAL.
2897 *  All fields have the same constraints and meaning as in DISP_REG_AVP. In addition, the "value" field must be set
2898 *  and points to a valid DICT_ENUMVAL object.
2899 *
2900 * Here is a sumary of the fields: ( M : must be set; m : may be set; 0 : ignored )
2901 *  field:     app_id    command     avp    value
2902 * APPID :       M          0         0       0
2903 * CC    :       m          M         0       0
2904 * AVP   :       m          m         M       0
2905 * ENUMVA:       m          m         M       M
2906 */
2907
2908enum disp_action {
2909        DISP_ACT_CONT,  /* The next handler should be called, unless *msg == NULL. */
2910        DISP_ACT_SEND,  /* The updated message must be sent. No further callback is called. */
2911        DISP_ACT_ERROR  /* An error must be created and sent as a reply -- not valid for callbacks, only for fd_msg_dispatch. */
2912};
2913/* The callbacks that are registered have the following prototype:
2914 *      int dispatch_callback( struct msg ** msg, struct avp * avp, struct session * session, enum disp_action * action );
2915 *
2916 * CALLBACK:    dispatch_callback
2917 *
2918 * PARAMETERS:
2919 *  msg         : the received message on function entry. may be updated to answer on return (see description)
2920 *  avp         : for callbacks registered with DISP_HOW_AVP or DISP_HOW_AVP_ENUMVAL, direct link to the triggering AVP.
2921 *  session     : if the message contains a Session-Id AVP, the corresponding session object, NULL otherwise.
2922 *  opaque      : An opaque pointer that is registered along the session handler.
2923 *  action      : upon return, this tells the daemon what to do next.
2924 *
2925 * DESCRIPTION:
2926 *   Called when a received message matchs the condition for which the callback was registered.
2927 * This callback may do any kind of processing on the message, including:
2928 *  - create an answer for a request.
2929 *  - proxy a request or message, add / remove the Proxy-Info AVP, then forward the message.
2930 *  - update a routing table or start a connection with a new peer, then forward the message.
2931 *  - ...
2932 *
2933 * When *action == DISP_ACT_SEND on callback return, the msg pointed by *msg is passed to the routing module for sending.
2934 * When *action == DISP_ACT_CONT, the next registered callback is called.
2935 *  When the last callback gives also DISP_ACT_CONT action value, a default handler is called. It's behavior is as follow:
2936 *   - if the message is an answer, it is discarded.
2937 *   - if the message is a request, it is passed again to the routing stack, and marked as non-local handling.
2938 *
2939 * RETURN VALUE:
2940 *  0           : The callback executed successfully and updated *action appropriately.
2941 *  !0          : standard errors. In case of error, the message is discarded.
2942 */
2943
2944/* This structure represents a handler for a registered callback, allowing its de-registration */
2945struct disp_hdl;
2946
2947/*
2948 * FUNCTION:    fd_disp_register
2949 *
2950 * PARAMETERS:
2951 *  cb            : The callback function to register (see dispatch_callback description above).
2952 *  how           : How the callback must be registered.
2953 *  when          : Values that must match, depending on the how argument.
2954 *  opaque        : A pointer that is passed back to the handler. The content is not interpreted by the framework.
2955 *  handle        : On success, a handler to the registered callback is stored here if not NULL.
2956 *                 This handler can be used to unregister the cb.
2957 *
2958 * DESCRIPTION:
2959 *   Register a new callback to handle messages delivered locally.
2960 *
2961 * RETURN VALUE:
2962 *  0           : The callback is registered.
2963 *  EINVAL      : A parameter is invalid.
2964 *  ENOMEM      : Not enough memory to complete the operation
2965 */
2966int fd_disp_register ( int (*cb)( struct msg **, struct avp *, struct session *, void *, enum disp_action *),
2967                        enum disp_how how, struct disp_when * when, void * opaque, struct disp_hdl ** handle );
2968
2969/*
2970 * FUNCTION:    fd_disp_unregister
2971 *
2972 * PARAMETERS:
2973 *  handle       : Location of the handle of the callback that must be unregistered.
2974 *  opaque       : If not NULL, the opaque data that was registered is restored here.
2975 *
2976 * DESCRIPTION:
2977 *   Removes a callback previously registered by fd_disp_register.
2978 *
2979 * RETURN VALUE:
2980 *  0           : The callback is unregistered.
2981 *  EINVAL      : A parameter is invalid.
2982 */
2983int fd_disp_unregister ( struct disp_hdl ** handle, void ** opaque );
2984
2985/* Destroy all handlers */
2986void fd_disp_unregister_all ( void );
2987
2988/*
2989 * FUNCTION:    fd_msg_dispatch
2990 *
2991 * PARAMETERS:
2992 *  msg         : A msg object that have already been fd_msg_parse_dict.
2993 *  session     : The session corresponding to this object, if any.
2994 *  action      : Upon return, the action that must be taken on the message
2995 *  error_code  : Upon return with action == DISP_ACT_ERROR, contains the error (such as "DIAMETER_UNABLE_TO_COMPLY")
2996 *  drop_reason : if set on return, the message must be freed for this reason.
2997 *  drop_msg    : if drop_reason is set, this points to the message to be freed while *msg is NULL.
2998 *
2999 * DESCRIPTION:
3000 *   Call all handlers registered for a given message.
3001 *  The session must have already been resolved on entry.
3002 *  The msg pointed may be updated during this process.
3003 *  Upon return, the action parameter points to what must be done next.
3004 *
3005 * RETURN VALUE:
3006 *  0           : Success.
3007 *  EINVAL      : A parameter is invalid.
3008 *  (other errors)
3009 */
3010int fd_msg_dispatch ( struct msg ** msg, struct session * session, enum disp_action *action, char ** error_code, char ** drop_reason, struct msg ** drop_msg );
3011
3012
3013
3014/*============================================================*/
3015/*                     QUEUES                                 */
3016/*============================================================*/
3017
3018/* Management of FIFO queues of elements */
3019
3020/* A queue is an opaque object */
3021struct fifo;
3022
3023/*
3024 * FUNCTION:    fd_fifo_new
3025 *
3026 * PARAMETERS:
3027 *  queue       : Upon success, a pointer to the new queue is saved here.
3028 *  max         : max number of items in the queue. Above this number, adding a new item becomes a
3029 *                blocking operation. Use 0 to disable this maximum.
3030 *
3031 * DESCRIPTION:
3032 *  Create a new empty queue.
3033 *
3034 * RETURN VALUE :
3035 *  0           : The queue has been initialized successfully.
3036 *  EINVAL      : The parameter is invalid.
3037 *  ENOMEM      : Not enough memory to complete the creation.
3038 */
3039int fd_fifo_new ( struct fifo ** queue, int max );
3040
3041/*
3042 * FUNCTION:    fd_fifo_set_max
3043 *
3044 * PARAMETERS:
3045 *  queue       : The queue for which to set the maximum value
3046 *  max         : max number of items in the queue.
3047 *
3048 * DESCRIPTION:
3049 *  Modify the maximum number of entries in a queue
3050 *
3051 * RETURN VALUE :
3052 *   0         : Success
3053 */
3054int fd_fifo_set_max ( struct fifo * queue, int max );
3055
3056/*
3057 * FUNCTION:    fd_fifo_del
3058 *
3059 * PARAMETERS:
3060 *  queue       : Pointer to an empty queue to delete.
3061 *
3062 * DESCRIPTION:
3063 *  Destroys a queue. This is only possible if no thread is waiting for an element,
3064 * and the queue is empty.
3065 *
3066 * RETURN VALUE:
3067 *  0           : The queue has been destroyed successfully.
3068 *  EINVAL      : The parameter is invalid.
3069 */
3070int fd_fifo_del ( struct fifo  ** queue );
3071
3072/*
3073 * FUNCTION:    fd_fifo_move
3074 *
3075 * PARAMETERS:
3076 *  oldq        : Location of a FIFO that is to be emptied.
3077 *  newq        : A FIFO that will receive the old data.
3078 *  loc_update  : if non NULL, a place to store the pointer to new FIFO atomically with the move.
3079 *
3080 * DESCRIPTION:
3081 *  Empties a queue and move its content to another one atomically.
3082 *
3083 * RETURN VALUE:
3084 *  0           : The queue has been destroyed successfully.
3085 *  EINVAL      : A parameter is invalid.
3086 */
3087int fd_fifo_move ( struct fifo * oldq, struct fifo * newq, struct fifo ** loc_update );
3088
3089/*
3090 * FUNCTION:    fd_fifo_getstats
3091 *
3092 * PARAMETERS:
3093 *  queue         : The queue from which to retrieve the information.
3094 *  current_count : How many items in the queue at the time of execution. This changes each time an item is pushed or poped.
3095 *  limit_count   : The maximum number of items allowed in this queue. This is specified during queue creation.
3096 *  highest_count : The maximum number of items this queue has contained. This enables to see if limit_count count was reached.
3097 *  total_count   : the total number of items that went through the queue (already pop'd). Always increasing.
3098 *  total         : Cumulated time all items spent in this queue, including blocking time (always growing, use deltas for monitoring)
3099 *  blocking      : Cumulated time threads trying to post new items were blocked (queue full).
3100 *  last          : For the last element retrieved from the queue, how long it take between posting (including blocking) and poping
3101 *
3102 * DESCRIPTION:
3103 *  Retrieve the timing information associated with a queue, for monitoring purpose.
3104 *
3105 * RETURN VALUE:
3106 *  0           : The statistics have been updated.
3107 *  EINVAL      : A parameter is invalid.
3108 */
3109int fd_fifo_getstats( struct fifo * queue, int * current_count, int * limit_count, int * highest_count, long long * total_count,
3110                                           struct timespec * total, struct timespec * blocking, struct timespec * last);
3111
3112/*
3113 * FUNCTION:    fd_fifo_length
3114 *
3115 * PARAMETERS:
3116 *  queue       : The queue from which to retrieve the number of elements.
3117 *
3118 * DESCRIPTION:
3119 *  Retrieve the number of elements in a queue, without error checking.
3120 *
3121 * RETURN VALUE:
3122 *  The number of items currently queued.
3123 */
3124int fd_fifo_length ( struct fifo * queue );
3125
3126/*
3127 * FUNCTION:    fd_fifo_setthrhd
3128 *
3129 * PARAMETERS:
3130 *  queue       : The queue for which the thresholds are being set.
3131 *  data        : An opaque pointer that is passed to h_cb and l_cb callbacks.
3132 *  high        : The high-level threshold. If the number of elements in the queue increase to this value, h_cb is called.
3133 *  h_cb        : if not NULL, a callback to call when the queue lengh is bigger than "high".
3134 *  low         : The low-level threshold. Must be < high.
3135 *  l_cb        : If the number of elements decrease to low, this callback is called.
3136 *
3137 * DESCRIPTION:
3138 *  This function allows to adjust the number of producer / consumer threads of a queue.
3139 * If the consumer are slower than the producers, the number of elements in the queue increase.
3140 * By setting a "high" value, we allow a callback to be called when this number is too high.
3141 * The typical use would be to create an additional consumer thread in this callback.
3142 * If the queue continues to grow, the callback will be called again when the length is 2 * high, then 3*high, ... N * high
3143 * (the callback itself should implement a limit on the number of consumers that can be created)
3144 * When the queue starts to decrease, and the number of elements go under ((N - 1) * high + low, the l_cb callback is called
3145 * and would typially stop one of the consumer threads. If the queue continues to reduce, l_cb is again called at (N-2)*high + low,
3146 * and so on.
3147 *
3148 * Since there is no destructor for the data pointer, if cleanup operations are required, they should be performed in
3149 * l_cb when the length of the queue is becoming < low.
3150 *
3151 * Note that the callbacks are called synchronously, during fd_fifo_post or fd_fifo_get. Their operation should be quick.
3152 *
3153 * RETURN VALUE:
3154 *  0           : The thresholds have been set
3155 *  EINVAL      : A parameter is invalid.
3156 */
3157int fd_fifo_setthrhd ( struct fifo * queue, void * data, uint16_t high, void (*h_cb)(struct fifo *, void **), uint16_t low, void (*l_cb)(struct fifo *, void **) );
3158
3159/*
3160 * FUNCTION:    fd_fifo_post
3161 *
3162 * PARAMETERS:
3163 *  queue       : The queue in which the element must be posted.
3164 *  item        : The element that is put in the queue.
3165 *
3166 * DESCRIPTION:
3167 *  An element is added in a queue. Elements are retrieved from the queue in FIFO order
3168 *  with the fd_fifo_get, fd_fifo_tryget, or fd_fifo_timedget functions.
3169 *
3170 * RETURN VALUE:
3171 *  0           : The element is queued.
3172 *  EINVAL      : A parameter is invalid.
3173 *  ENOMEM      : Not enough memory to complete the operation.
3174 */
3175int fd_fifo_post_int ( struct fifo * queue, void ** item );
3176#define fd_fifo_post(queue, item) \
3177        fd_fifo_post_int((queue), (void *)(item))
3178
3179/* Similar function but does not block. It can cause the number of items in the queue to exceed the maximum set. Do not use for normal operation,
3180only for failure recovery for example. */
3181int fd_fifo_post_noblock( struct fifo * queue, void ** item );
3182
3183/*
3184 * FUNCTION:    fd_fifo_get
3185 *
3186 * PARAMETERS:
3187 *  queue       : The queue from which the first element must be retrieved.
3188 *  item        : On return, the first element of the queue is stored here.
3189 *
3190 * DESCRIPTION:
3191 *  This function retrieves the first element from a queue. If the queue is empty, the function will block the
3192 * thread until a new element is posted to the queue, or until the thread is canceled (in which case the
3193 * function does not return).
3194 *
3195 * RETURN VALUE:
3196 *  0           : A new element has been retrieved.
3197 *  EINVAL      : A parameter is invalid.
3198 */
3199int fd_fifo_get_int ( struct fifo * queue, void ** item );
3200#define fd_fifo_get(queue, item) \
3201        fd_fifo_get_int((queue), (void *)(item))
3202
3203/*
3204 * FUNCTION:    fd_fifo_tryget
3205 *
3206 * PARAMETERS:
3207 *  queue       : The queue from which the element must be retrieved.
3208 *  item        : On return, the first element of the queue is stored here.
3209 *
3210 * DESCRIPTION:
3211 *  This function is similar to fd_fifo_get, except that it will not block if
3212 * the queue is empty, but return EWOULDBLOCK instead.
3213 *
3214 * RETURN VALUE:
3215 *  0           : A new element has been retrieved.
3216 *  EINVAL      : A parameter is invalid.
3217 *  EWOULDBLOCK : The queue was empty.
3218 */
3219int fd_fifo_tryget_int ( struct fifo * queue, void ** item );
3220#define fd_fifo_tryget(queue, item) \
3221        fd_fifo_tryget_int((queue), (void *)(item))
3222
3223/*
3224 * FUNCTION:    fd_fifo_timedget
3225 *
3226 * PARAMETERS:
3227 *  queue       : The queue from which the element must be retrieved.
3228 *  item        : On return, the element is stored here.
3229 *  abstime     : the absolute time until which we allow waiting for an item.
3230 *
3231 * DESCRIPTION:
3232 *  This function is similar to fd_fifo_get, except that it will block if the queue is empty
3233 * only until the absolute time abstime (see pthread_cond_timedwait for + info).
3234 * If the queue is still empty when the time expires, the function returns ETIMEDOUT
3235 *
3236 * RETURN VALUE:
3237 *  0           : A new item has been retrieved.
3238 *  EINVAL      : A parameter is invalid.
3239 *  ETIMEDOUT   : The time out has passed and no item has been received.
3240 */
3241int fd_fifo_timedget_int ( struct fifo * queue, void ** item, const struct timespec *abstime );
3242#define fd_fifo_timedget(queue, item, abstime) \
3243        fd_fifo_timedget_int((queue), (void *)(item), (abstime))
3244
3245
3246/*
3247 * FUNCTION:    fd_fifo_select
3248 *
3249 * PARAMETERS:
3250 *  queue       : The queue to test.
3251 *  abstime     : the absolute time until which we can block waiting for an item. If NULL, the function returns immediatly.
3252 *
3253 * DESCRIPTION:
3254 *  This function is similar to select(), it waits for data to be available in the queue
3255 * until the abstime is expired.
3256 * Upon function entry, even if abstime is already expired the data availability is tested.
3257 *
3258 * RETURN VALUE:
3259 *  0           : timeout expired without available data.
3260 *  <0          : An error occurred (e.g., -EINVAL...)
3261 *  >0          : data is available. The next call to fd_fifo_get will not block.
3262 */
3263int fd_fifo_select ( struct fifo * queue, const struct timespec *abstime );
3264
3265
3266
3267/* Dump a fifo list and optionally its inner elements -- beware of deadlocks! */
3268typedef DECLARE_FD_DUMP_PROTOTYPE((*fd_fifo_dump_item_cb), void * item); /* This function should be 1 line if possible, or use indent level. Ends with '\n' */
3269DECLARE_FD_DUMP_PROTOTYPE(fd_fifo_dump, char * name, struct fifo * queue, fd_fifo_dump_item_cb dump_item);
3270
3271#ifdef __cplusplus
3272}
3273#endif
3274
3275#endif /* _LIBFDPROTO_H */
Note: See TracBrowser for help on using the repository browser.