Navigation


source: freeDiameter/include/freeDiameter/libfdproto.h @ 705:f0cb8f465763

Last change on this file since 705:f0cb8f465763 was 705:f0cb8f465763, checked in by Sebastien Decugis <sdecugis@nict.go.jp>, 11 years ago

Added standard Result-Code values in header.
Added Error-Cause attribute conversion in app_radgw.

File size: 106.3 KB
Line 
1/*********************************************************************************************************
2* Software License Agreement (BSD License)                                                               *
3* Author: Sebastien Decugis <sdecugis@nict.go.jp>                                                        *
4*                                                                                                        *
5* Copyright (c) 2011, WIDE Project and NICT                                                              *
6* All rights reserved.                                                                                   *
7*                                                                                                        *
8* Redistribution and use of this software in source and binary forms, with or without modification, are  *
9* permitted provided that the following conditions are met:                                              *
10*                                                                                                        *
11* * Redistributions of source code must retain the above                                                 *
12*   copyright notice, this list of conditions and the                                                    *
13*   following disclaimer.                                                                                *
14*                                                                                                        *
15* * Redistributions in binary form must reproduce the above                                              *
16*   copyright notice, this list of conditions and the                                                    *
17*   following disclaimer in the documentation and/or other                                               *
18*   materials provided with the distribution.                                                            *
19*                                                                                                        *
20* * Neither the name of the WIDE Project or NICT nor the                                                 *
21*   names of its contributors may be used to endorse or                                                  *
22*   promote products derived from this software without                                                  *
23*   specific prior written permission of WIDE Project and                                                *
24*   NICT.                                                                                                *
25*                                                                                                        *
26* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED *
27* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
28* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR *
29* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT     *
30* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS    *
31* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
32* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY S_OUT OF THE USE OF THIS SOFTWARE, EVEN IF   *
33* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                                                             *
34*********************************************************************************************************/
35
36/* This file contains the definitions of functions and types used by the libfreeDiameter library.
37 *
38 * This library is meant to be used by both the freeDiameter daemon and its extensions.
39 * It provides the tools to manipulate Diameter messages and related data.
40 * This file should always be included as #include <freeDiameter/libfreeDiameter.h>
41 *
42 * If any change is made to this file, you must increment the FD_PROJECT_VERSION_API version.
43 *
44 * The file contains the following parts:
45 *      DEBUG
46 *      MACROS
47 *      THREADS
48 *      LISTS
49 *      DICTIONARY
50 *      SESSIONS
51 *      MESSAGES
52 *      DISPATCH
53 *      QUEUES
54 */
55
56#ifndef _LIBFDPROTO_H
57#define _LIBFDPROTO_H
58
59#ifndef FD_IS_CONFIG
60#error "You must include 'freeDiameter-host.h' before this file."
61#endif /* FD_IS_CONFIG */
62
63#include <pthread.h>
64#include <sched.h>
65#include <string.h>
66#include <assert.h>
67#include <errno.h>
68#include <netinet/in.h>
69#include <arpa/inet.h>
70#include <sys/socket.h>
71#include <netdb.h>
72#include <stdio.h>
73#include <stdlib.h>
74#include <unistd.h>
75
76#ifdef DEBUG
77#include <libgen.h>     /* for basename if --dbg_file is specified */
78#endif /* DEBUG */
79
80/*============================================================*/
81/*                          INIT                              */
82/*============================================================*/
83
84/* This function must be called first, before any call to another library function */
85int fd_libproto_init(void); /* note if you are using libfdcore, it handles this already */
86
87/* Call this one when the application terminates, to destroy internal threads */
88void fd_libproto_fini(void);
89
90
91/*============================================================*/
92/*                          DEBUG                             */
93/*============================================================*/
94
95
96/*
97 * FUNCTION:    fd_log_debug_fstr
98 * MACRO:       fd_log_debug
99 *
100 * PARAMETERS:
101 *  fstr        : Stream where the text will be sent (default: stdout)
102 *  format      : Same format string as in the printf function
103 *  ...         : Same list as printf
104 *
105 * DESCRIPTION:
106 *  Log internal information for use of developpers only.
107 * The format and arguments may contain UTF-8 encoded data. The
108 * output medium (file or console) is expected to support this encoding.
109 *
110 * This function assumes that a global mutex called "fd_log_lock" exists
111 * in the address space of the current process.
112 *
113 * RETURN VALUE:
114 *  None.
115 */
116void fd_log_debug_fstr ( FILE * fstr, const char * format, ... );
117#define fd_log_debug(format,args...) fd_log_debug_fstr(NULL, format, ## args)
118
119extern pthread_mutex_t  fd_log_lock;
120extern char * fd_debug_one_function;
121extern char * fd_debug_one_file;
122
123/*
124 * FUNCTION:    fd_log_threadname
125 *
126 * PARAMETERS:
127 *  name        : \0-terminated string containing a name to identify the current thread.
128 *
129 * DESCRIPTION:
130 *  Name the current thread, useful for debugging multi-threaded problems.
131 *
132 * This function assumes that a global thread-specific key called "fd_log_thname" exists
133 * in the address space of the current process.
134 *
135 * RETURN VALUE:
136 *  None.
137 */
138void fd_log_threadname ( char * name );
139extern pthread_key_t    fd_log_thname;
140
141/*
142 * FUNCTION:    fd_log_time
143 *
144 * PARAMETERS:
145 *  ts          : The timestamp to log, or NULL for "now"
146 *  buf         : An array where the time must be stored
147 *  len         : size of the buffer
148 *
149 * DESCRIPTION:
150 *  Writes the timestamp (in human readable format) in a buffer.
151 *
152 * RETURN VALUE:
153 *  pointer to buf.
154 */
155char * fd_log_time ( struct timespec * ts, char * buf, size_t len );
156
157
158/*============================================================*/
159/*                    DEBUG MACROS                            */
160/*============================================================*/
161
162#ifndef ASSERT
163#define ASSERT(x) assert(x)
164#endif /* ASSERT */
165
166/* levels definitions */
167#define NONE 0  /* Display no debug message */
168#define INFO 1  /* Display errors only */
169#define FULL 2  /* Display additional information to follow code execution */
170#define ANNOYING 4 /* Very verbose, for example in loops */
171#define FCTS 6  /* Display entry parameters of most functions */
172#define CALL 9  /* Display calls to most functions (with CHECK macros) */
173
174/* Default level is INFO */
175#ifndef TRACE_LEVEL
176#define TRACE_LEVEL INFO
177#endif /* TRACE_LEVEL */
178
179/* The level of the file being compiled. */
180static int local_debug_level = TRACE_LEVEL;
181
182/* A global level, changed by configuration or cmd line for example. default is 0. */
183extern int fd_g_debug_lvl;
184
185/* Some portability code to get nice function name in __PRETTY_FUNCTION__ */
186#if __STDC_VERSION__ < 199901L
187# if __GNUC__ >= 2
188#  define __func__ __FUNCTION__
189# else /* __GNUC__ >= 2 */
190#  define __func__ "<unknown>"
191# endif /* __GNUC__ >= 2 */
192#endif /* __STDC_VERSION__ < 199901L */
193#ifndef __PRETTY_FUNCTION__
194#define __PRETTY_FUNCTION__ __func__
195#endif /* __PRETTY_FUNCTION__ */
196
197/* A version of __FILE__ without the full path */
198static char * file_bname = NULL;
199#define __STRIPPED_FILE__       (file_bname ?: (file_bname = basename((char *)__FILE__)))
200
201
202/* Boolean for tracing at a certain level */
203#ifdef DEBUG
204#define TRACE_BOOL(_level_) ( ((_level_) <= local_debug_level + fd_g_debug_lvl)                                         \
205                                || (fd_debug_one_function && !strcmp(fd_debug_one_function, __PRETTY_FUNCTION__))       \
206                                || (fd_debug_one_file && !strcmp(fd_debug_one_file, __STRIPPED_FILE__) ) )
207#else /* DEBUG */
208#define TRACE_BOOL(_level_) ((_level_) <= local_debug_level + fd_g_debug_lvl)
209#endif /* DEBUG */
210
211
212/*************
213 The general debug macro, each call results in two lines of debug messages (change the macro for more compact output)
214 *************/
215#ifdef DEBUG
216/* In DEBUG mode, we add (a lot of) meta-information along each trace. This makes multi-threading problems easier to debug. */
217#define TRACE_DEBUG(level,format,args... ) {                                                                                    \
218        if ( TRACE_BOOL(level) ) {                                                                                              \
219                char __buf[25];                                                                                                 \
220                const char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                 \
221                fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
222                          "\t%s|%*s" format "\n",                                                                               \
223                                        __thn, fd_log_time(NULL, __buf, sizeof(__buf)), __PRETTY_FUNCTION__, __FILE__, __LINE__,\
224                                        (level < FULL)?"@":" ",level, "", ## args);                                             \
225        }                                                                                                                       \
226}
227#else /* DEBUG */
228/* Do not print thread, function, ... only the message itself in this case, unless the debug level is set > FULL. */
229#define TRACE_DEBUG(level,format,args... ) {                                                                                            \
230        if ( TRACE_BOOL(level) ) {                                                                                                      \
231                if (fd_g_debug_lvl > FULL) {                                                                                            \
232                        char __buf[25];                                                                                                 \
233                        const char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                 \
234                        fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
235                                  "\t%s|%*s" format "\n",                                                                               \
236                                                __thn, fd_log_time(NULL, __buf, sizeof(__buf)), __PRETTY_FUNCTION__, __FILE__, __LINE__,\
237                                                (level < FULL)?"@":" ",level, "", ## args);                                             \
238                } else {                                                                                                                \
239                        fd_log_debug(format "\n", ## args);                                                                             \
240                }                                                                                                                       \
241        }                                                                                                                               \
242}
243#endif /* DEBUG */
244
245/*************
246 Derivatives from this macro
247 ************/
248/* Helper for function entry -- for very detailed trace of the execution */
249#define TRACE_ENTRY(_format,_args... ) \
250        TRACE_DEBUG(FCTS, "[enter] %s(" _format ") {" #_args "}", __PRETTY_FUNCTION__, ##_args );
251
252/* Helper for debugging by adding traces -- for debuging a specific location of the code */
253#define TRACE_HERE()    \
254        TRACE_DEBUG(NONE, " -- debug checkpoint %d -- ", fd_breakhere());
255int fd_breakhere(void);
256
257/* Helper for tracing the CHECK_* macros bellow -- very very verbose code execution! */
258#define TRACE_DEBUG_ALL( str )  \
259        TRACE_DEBUG(CALL, str );
260
261/* For development only, to keep track of TODO locations in the code */
262#ifndef ERRORS_ON_TODO
263#define TODO( _msg, _args... ) \
264        TRACE_DEBUG(NONE, "TODO: " _msg , ##_args);
265#else /* ERRORS_ON_TODO */
266#define TODO( _msg, _args... ) \
267        "TODO" = _msg ## _args; /* just a stupid compilation error to spot the todo */
268#endif /* ERRORS_ON_TODO */
269
270/* Trace a binary buffer content */
271#define TRACE_DEBUG_BUFFER(level, prefix, buf, bufsz, suffix ) {                                                                \
272        if ( TRACE_BOOL(level) ) {                                                                                              \
273                char __ts[25];                                                                                                  \
274                int __i;                                                                                                        \
275                size_t __sz = (size_t)(bufsz);                                                                                  \
276                uint8_t * __buf = (uint8_t *)(buf);                                                                             \
277                char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                       \
278                fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
279                          "\t%s|%*s" prefix ,                                                                                   \
280                                        __thn, fd_log_time(NULL, __ts, sizeof(__ts)), __PRETTY_FUNCTION__, __FILE__, __LINE__,  \
281                                        (level < FULL)?"@":" ",level, "");                                                      \
282                for (__i = 0; __i < __sz; __i++) {                                                                              \
283                        fd_log_debug("%02.2hhx", __buf[__i]);                                                                   \
284                }                                                                                                               \
285                fd_log_debug(suffix "\n");                                                                                      \
286        }                                                                                                                       \
287}
288
289/* Some aliases to socket addresses structures */
290#define sSS     struct sockaddr_storage
291#define sSA     struct sockaddr
292#define sSA4    struct sockaddr_in
293#define sSA6    struct sockaddr_in6
294
295/* The sockaddr length of a sSS structure */
296#define sSAlen( _sa_ )  \
297        ( (socklen_t) ( (((sSA *)_sa_)->sa_family == AF_INET) ? (sizeof(sSA4)) :                \
298                                ((((sSA *)_sa_)->sa_family == AF_INET6) ? (sizeof(sSA6)) :      \
299                                        0 ) ) )
300
301/* Dump one sockaddr Node information */
302#define sSA_DUMP_NODE( sa, flag ) {                             \
303        sSA * __sa = (sSA *)(sa);                               \
304        char __addrbuf[INET6_ADDRSTRLEN];                       \
305        if (__sa) {                                             \
306          int __rc = getnameinfo(__sa,                          \
307                        sSAlen(__sa),                           \
308                        __addrbuf,                              \
309                        sizeof(__addrbuf),                      \
310                        NULL,                                   \
311                        0,                                      \
312                        flag);                                  \
313          if (__rc)                                             \
314                fd_log_debug("%s", (char *)gai_strerror(__rc)); \
315          else                                                  \
316                fd_log_debug("%s", &__addrbuf[0]);              \
317        } else {                                                \
318                fd_log_debug("(NULL / ANY)");                   \
319        }                                                       \
320}
321/* Same but with the port (service) also */
322#define sSA_DUMP_NODE_SERV( sa, flag ) {                                \
323        sSA * __sa = (sSA *)(sa);                                       \
324        char __addrbuf[INET6_ADDRSTRLEN];                               \
325        char __servbuf[32];                                             \
326        if (__sa) {                                                     \
327          int __rc = getnameinfo(__sa,                                  \
328                        sSAlen(__sa),                                   \
329                        __addrbuf,                                      \
330                        sizeof(__addrbuf),                              \
331                        __servbuf,                                      \
332                        sizeof(__servbuf),                              \
333                        flag);                                          \
334          if (__rc)                                                     \
335                fd_log_debug("%s", (char *)gai_strerror(__rc));         \
336          else                                                          \
337                fd_log_debug("[%s]:%s", &__addrbuf[0],&__servbuf[0]);   \
338        } else {                                                        \
339                fd_log_debug("(NULL / ANY)");                           \
340        }                                                               \
341}
342
343/* Inside a debug trace */
344#define TRACE_DEBUG_sSA(level, prefix, sa, flags, suffix ) {                                                                            \
345        if ( TRACE_BOOL(level) ) {                                                                                              \
346                char __buf[25];                                                                                                 \
347                char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                       \
348                fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
349                          "\t%s|%*s" prefix ,                                                                                   \
350                                        __thn, fd_log_time(NULL, __buf, sizeof(__buf)), __PRETTY_FUNCTION__, __FILE__, __LINE__,\
351                                        (level < FULL)?"@":" ",level, "");                                                      \
352                sSA_DUMP_NODE_SERV( sa, flags );                                                                                \
353                fd_log_debug(suffix "\n");                                                                                      \
354        }                                                                                                                       \
355}
356
357/* Report an error */
358#define TRACE_DEBUG_ERROR(format,args... ) \
359        TRACE_DEBUG(NONE, format, ##args)
360
361/******************
362 Optimized code: remove all debugging code
363 **/
364#ifdef STRIP_DEBUG_CODE
365#undef TRACE_DEBUG
366#undef TRACE_BOOL
367#undef TRACE_DEBUG_sSA
368#undef TRACE_DEBUG_BUFFER
369#undef TRACE_DEBUG_ERROR
370#define TRACE_DEBUG(level,format,args... )
371#define TRACE_BOOL(_level_) (0)
372#define TRACE_DEBUG_BUFFER(level, prefix, buf, bufsz, suffix )
373#define TRACE_DEBUG_sSA(level, prefix, sa, flags, suffix )
374#define TRACE_DEBUG_ERROR(format,args... ) {    \
375        fd_log_debug(format "\n", ## args);     \
376}
377#endif /* STRIP_DEBUG_CODE */
378
379
380/*============================================================*/
381/*                  ERROR CHECKING MACRO                      */
382/*============================================================*/
383
384/* Macros to check a return value and branch out in case of error.
385 * These macro should be used only when errors are improbable, not for expected errors.
386 */
387
388/* Check the return value of a system function and execute fallback in case of error */
389#define CHECK_SYS_DO( __call__, __fallback__  ) {                                       \
390        int __ret__;                                                                    \
391        TRACE_DEBUG_ALL( "Check SYS: " #__call__ );                                     \
392        __ret__ = (__call__);                                                           \
393        if (__ret__ < 0) {                                                              \
394                int __err__ = errno;    /* We may handle EINTR here */                  \
395                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "' :\t%s", strerror(__err__));\
396                __fallback__;                                                           \
397        }                                                                               \
398}
399/* Check the return value of a system function, return error code on error */
400#define CHECK_SYS( __call__  ) {                                                        \
401        int __ret__;                                                                    \
402        TRACE_DEBUG_ALL( "Check SYS: " #__call__ );                                     \
403        __ret__ = (__call__);                                                           \
404        if (__ret__ < 0) {                                                              \
405                int __err__ = errno;    /* We may handle EINTR here */                  \
406                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "' :\t%s", strerror(__err__));\
407                return __err__;                                                         \
408        }                                                                               \
409}
410
411/* Check the return value of a POSIX function and execute fallback in case of error or special value */
412#define CHECK_POSIX_DO2( __call__, __speval__, __fallback1__, __fallback2__ ) {                 \
413        int __ret__;                                                                            \
414        TRACE_DEBUG_ALL( "Check POSIX: " #__call__ );                                           \
415        __ret__ = (__call__);                                                                   \
416        if (__ret__ != 0) {                                                                     \
417                if (__ret__ == (__speval__)) {                                                  \
418                        __fallback1__;                                                          \
419                } else {                                                                        \
420                        TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "':\t%s", strerror(__ret__)); \
421                        __fallback2__;                                                          \
422                }                                                                               \
423        }                                                                                       \
424}
425
426/* Check the return value of a POSIX function and execute fallback in case of error */
427#define CHECK_POSIX_DO( __call__, __fallback__ )                                        \
428        CHECK_POSIX_DO2( (__call__), 0, , __fallback__ );
429
430/* Check the return value of a POSIX function and return it if error */
431#define CHECK_POSIX( __call__ ) {                                                       \
432        int __v__;                                                                      \
433        CHECK_POSIX_DO( __v__ = (__call__), return __v__ );                             \
434}
435
436/* Check that a memory allocator did not return NULL, otherwise log an error and execute fallback */
437#define CHECK_MALLOC_DO( __call__, __fallback__ ) {                                     \
438        void *  __ret__;                                                                \
439        TRACE_DEBUG_ALL( "Check MALLOC: " #__call__ );                                  \
440        __ret__ = (void *)( __call__ );                                                 \
441        if (__ret__ == NULL) {                                                          \
442                int __err__ = errno;                                                    \
443                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "':\t%s", strerror(__err__)); \
444                __fallback__;                                                           \
445        }                                                                               \
446}
447
448/* Check that a memory allocator did not return NULL, otherwise return ENOMEM */
449#define CHECK_MALLOC( __call__ )                                                        \
450        CHECK_MALLOC_DO( __call__, return ENOMEM );
451
452
453/* Check parameters at function entry, execute fallback on error */
454#define CHECK_PARAMS_DO( __bool__, __fallback__ )                                               \
455        TRACE_DEBUG_ALL( "Check PARAMS: " #__bool__ );                                          \
456        if ( ! (__bool__) ) {                                                                   \
457                TRACE_DEBUG_ERROR("Warning: Invalid parameter received in '" #__bool__ "'");    \
458                __fallback__;                                                                   \
459        }
460/* Check parameters at function entry, return EINVAL if the boolean is false (similar to assert) */
461#define CHECK_PARAMS( __bool__ )                                                        \
462        CHECK_PARAMS_DO( __bool__, return EINVAL );
463
464/* Check the return value of an internal function, log and propagate */
465#define CHECK_FCT_DO( __call__, __fallback__ ) {                                        \
466        int __ret__;                                                                    \
467        TRACE_DEBUG_ALL( "Check FCT: " #__call__ );                                     \
468        __ret__ = (__call__);                                                           \
469        if (__ret__ != 0) {                                                             \
470                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "':\t%s", strerror(__ret__)); \
471                __fallback__;                                                           \
472        }                                                                               \
473}
474/* Check the return value of a function call, return any error code */
475#define CHECK_FCT( __call__ ) {                                                         \
476        int __v__;                                                                      \
477        CHECK_FCT_DO( __v__ = (__call__), return __v__ );                               \
478}
479
480
481
482/*============================================================*/
483/*                  OTHER MACROS                              */
484/*============================================================*/
485
486
487/* helper macros (pre-processor hacks to allow macro arguments) */
488#define __tostr( arg )  #arg
489#define _stringize( arg ) __tostr( arg )
490#define __agr( arg1, arg2 ) arg1 ## arg2
491#define _aggregate( arg1, arg2 ) __agr( arg1, arg2 )
492
493
494/* A l4 protocol name (TCP / SCTP) */
495#ifdef DISABLE_SCTP
496#define IPPROTO_NAME( _proto )                                  \
497        (((_proto) == IPPROTO_TCP) ? "TCP" :                    \
498                        "Unknown")
499#else /* DISABLE_SCTP */
500#define IPPROTO_NAME( _proto )                                  \
501        ( ((_proto) == IPPROTO_TCP) ? "TCP" :                   \
502                (((_proto) == IPPROTO_SCTP) ? "SCTP" :          \
503                        "Unknown"))
504#endif /* DISABLE_SCTP */
505
506/* Define the value of IP loopback address */
507#ifndef INADDR_LOOPBACK
508#define INADDR_LOOPBACK inet_addr("127.0.0.1")
509#endif /* INADDR_LOOPBACK */
510
511#ifndef INADDR_BROADCAST
512#define INADDR_BROADCAST        ((in_addr_t) 0xffffffff)
513#endif /* INADDR_BROADCAST */
514
515/* An IP equivalent to IN6_IS_ADDR_LOOPBACK */
516#ifndef IN_IS_ADDR_LOOPBACK
517#define IN_IS_ADDR_LOOPBACK(a) \
518  ((((long int) (a)->s_addr) & ntohl(0xff000000)) == ntohl(0x7f000000))
519#endif /* IN_IS_ADDR_LOOPBACK */
520
521/* An IP equivalent to IN6_IS_ADDR_UNSPECIFIED */
522#ifndef IN_IS_ADDR_UNSPECIFIED
523#define IN_IS_ADDR_UNSPECIFIED(a) \
524  (((long int) (a)->s_addr) == 0x00000000)
525#endif /* IN_IS_ADDR_UNSPECIFIED */
526
527/* create a V4MAPPED address */
528#define IN6_ADDR_V4MAP( a6, a4 ) {                      \
529        ((uint32_t *)(a6))[0] = 0;                      \
530        ((uint32_t *)(a6))[1] = 0;                      \
531        ((uint32_t *)(a6))[2] = htonl(0xffff);          \
532        ((uint32_t *)(a6))[3] = (uint32_t)(a4);         \
533}
534
535/* Retrieve a v4 value from V4MAPPED address ( takes a s6_addr as param) */
536#define IN6_ADDR_V4UNMAP( a6 )                          \
537        (((in_addr_t *)(a6))[3])
538
539
540/* We provide macros to convert 64 bit values to and from network byte-order, on systems where it is not already provided. */
541#ifndef HAVE_NTOHLL     /* Defined by the cmake step, if the ntohll symbol is defined on the system */
542# if HOST_BIG_ENDIAN
543    /* In big-endian systems, we don't have to change the values, since the order is the same as network */
544#   define ntohll(x) (x)
545#   define htonll(x) (x)
546# else /* HOST_BIG_ENDIAN */
547    /* For these systems, we must reverse the bytes. Use ntohl and htonl on sub-32 blocs, and inverse these blocs. */
548#   define ntohll(x) (typeof (x))( (((uint64_t)ntohl( (uint32_t)(x))) << 32 ) | ((uint64_t) ntohl( ((uint64_t)(x)) >> 32 )))
549#   define htonll(x) (typeof (x))( (((uint64_t)htonl( (uint32_t)(x))) << 32 ) | ((uint64_t) htonl( ((uint64_t)(x)) >> 32 )))
550# endif /* HOST_BIG_ENDIAN */
551#endif /* HAVE_NTOHLL */
552
553/* This macro will give the next multiple of 4 for an integer (used for padding sizes of AVP). */
554#define PAD4(_x) ((_x) + ( (4 - (_x)) & 3 ) )
555
556/* Useful to display any value as (safe) ASCII (will garbage UTF-8 output...) */
557#define ASCII(_c) ( ((_c < 32) || (_c > 127)) ? ( _c ? '?' : ' ' ) : _c )
558
559/* Compare timespec structures */
560#define TS_IS_INFERIOR( ts1, ts2 )              \
561        (    ((ts1)->tv_sec  < (ts2)->tv_sec )  \
562          || (((ts1)->tv_sec  == (ts2)->tv_sec ) && ((ts1)->tv_nsec < (ts2)->tv_nsec) ))
563
564/* This gives a good size for buffered reads */
565#ifndef BUFSIZ
566#define BUFSIZ 96
567#endif /* BUFSIZ */
568
569
570
571/*============================================================*/
572/*                          THREADS                           */
573/*============================================================*/
574
575/* Terminate a thread */
576static __inline__ int fd_thr_term(pthread_t * th)
577{
578        void * th_ret = NULL;
579       
580        CHECK_PARAMS(th);
581       
582        /* Test if it was already terminated */
583        if (*th == (pthread_t)NULL)
584                return 0;
585       
586        /* Cancel the thread if it is still running - ignore error if it was already terminated */
587        (void) pthread_cancel(*th);
588       
589        /* Then join the thread */
590        CHECK_POSIX( pthread_join(*th, &th_ret) );
591       
592        if (th_ret == PTHREAD_CANCELED) {
593                TRACE_DEBUG(ANNOYING, "The thread %p was canceled", *th);
594        } else {
595                TRACE_DEBUG(CALL, "The thread %p returned %x", *th, th_ret);
596        }
597       
598        /* Clean the location */
599        *th = (pthread_t)NULL;
600       
601        return 0;
602}
603
604/* Force flushing the cache of a CPU before reading a shared memory area (use only for atomic reads such as int and void*) */
605extern pthread_mutex_t fd_cpu_mtx_dummy; /* only for the macro bellow, so that we have reasonably fresh pir_state value when needed */
606#define fd_cpu_flush_cache() {                          \
607        (void)pthread_mutex_lock(&fd_cpu_mtx_dummy);    \
608        (void)pthread_mutex_unlock(&fd_cpu_mtx_dummy);  \
609}
610
611
612/*************
613 Cancelation cleanup handlers for common objects
614 *************/
615static __inline__ void fd_cleanup_mutex( void * mutex )
616{
617        CHECK_POSIX_DO( pthread_mutex_unlock((pthread_mutex_t *)mutex), /* */);
618}
619               
620static __inline__ void fd_cleanup_rwlock( void * rwlock )
621{
622        CHECK_POSIX_DO( pthread_rwlock_unlock((pthread_rwlock_t *)rwlock), /* */);
623}
624
625static __inline__ void fd_cleanup_buffer( void * buffer )
626{
627        free(buffer);
628}
629static __inline__ void fd_cleanup_socket(void * sockptr)
630{
631        if (sockptr && (*(int *)sockptr > 0)) {
632                CHECK_SYS_DO( close(*(int *)sockptr), /* ignore */ );
633                *(int *)sockptr = -1;
634        }
635}
636
637
638/*============================================================*/
639/*                          LISTS                             */
640/*============================================================*/
641
642/* The following structure represents a chained list element  */
643struct fd_list {
644        struct fd_list  *next; /* next element in the list */
645        struct fd_list  *prev; /* previous element in the list */
646        struct fd_list  *head; /* head of the list */
647        void            *o;    /* additional pointer, used for any purpose (ex: start of the parent object) */
648};
649
650/* Initialize a list element */
651#define FD_LIST_INITIALIZER( _list_name ) \
652        { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = NULL }
653#define FD_LIST_INITIALIZER_O( _list_name, _obj ) \
654        { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = _obj }
655void fd_list_init ( struct fd_list * list, void * obj );
656
657/* Return boolean, true if the list is empty */
658#define FD_IS_LIST_EMPTY( _list ) ((((struct fd_list *)(_list))->head == (_list)) && (((struct fd_list *)(_list))->next == (_list)))
659
660/* Insert an item in a list at known position */
661void fd_list_insert_after  ( struct fd_list * ref, struct fd_list * item );
662void fd_list_insert_before ( struct fd_list * ref, struct fd_list * item );
663
664/* Move all elements from a list at the end of another */
665void fd_list_move_end(struct fd_list * ref, struct fd_list * senti);
666
667/* Insert an item in an ordered list -- ordering function must be provided. If duplicate object found, EEXIST and it is returned in ref_duplicate */
668int fd_list_insert_ordered( struct fd_list * head, struct fd_list * item, int (*cmp_fct)(void *, void *), void ** ref_duplicate);
669
670/* Unlink an item from a list */
671void fd_list_unlink ( struct fd_list * item );
672
673
674
675/*============================================================*/
676/*                          HASH                              */
677/*============================================================*/
678
679/* Compute a hash value of a string (session id, diameter id, ...) */
680uint32_t fd_hash ( char * string, size_t len );
681
682
683
684/*============================================================*/
685/*                        DICTIONARY                          */
686/*============================================================*/
687
688/* Structure that contains the complete dictionary definitions */
689struct dictionary;
690
691/* Structure that contains a dictionary object */
692struct dict_object;
693
694/* Types of object in the dictionary. */
695enum dict_object_type {
696        DICT_VENDOR     = 1,    /* Vendor */
697        DICT_APPLICATION,       /* Diameter Application */
698        DICT_TYPE,              /* AVP data type */
699        DICT_ENUMVAL,           /* Named constant (value of an enumerated AVP type) */
700        DICT_AVP,               /* AVP */
701        DICT_COMMAND,           /* Diameter Command */
702        DICT_RULE               /* a Rule for AVP in command or grouped AVP */
703#define DICT_TYPE_MAX   DICT_RULE
704};
705       
706/* Initialize a dictionary */
707int fd_dict_init(struct dictionary ** dict);
708/* Destroy a dictionary */
709int fd_dict_fini(struct dictionary ** dict);
710
711/*
712 * FUNCTION:    fd_dict_new
713 *
714 * PARAMETERS:
715 *  dict        : Pointer to the dictionnary where the object is created
716 *  type        : What kind of object must be created
717 *  data        : pointer to the data for the object.
718 *               type parameter is used to determine the type of data (see bellow for detail).
719 *  parent      : a reference to a parent object, if needed.
720 *  ref         : upon successful creation, reference to new object is stored here if !null.
721 *
722 * DESCRIPTION:
723 *  Create a new object in the dictionary.
724 *  See following object sections in this header file for more information on data and parent parameters format.
725 *
726 * RETURN VALUE:
727 *  0           : The object is created in the dictionary.
728 *  EINVAL      : A parameter is invalid.
729 *  EEXIST      : This object is already defined in the dictionary (with conflicting data).
730 *                If "ref" is not NULL, it points to the existing element on return.
731 *  (other standard errors may be returned, too, with their standard meaning. Example:
732 *    ENOMEM    : Memory allocation for the new object element failed.)
733 */
734int fd_dict_new ( struct dictionary * dict, enum dict_object_type type, void * data, struct dict_object * parent, struct dict_object ** ref );
735
736/*
737 * FUNCTION:    fd_dict_search
738 *
739 * PARAMETERS:
740 *  dict        : Pointer to the dictionnary where the object is searched
741 *  type        : type of object that is being searched
742 *  criteria    : how the object must be searched. See object-related sections bellow for more information.
743 *  what        : depending on criteria, the data that must be searched.
744 *  result      : On successful return, pointer to the object is stored here.
745 *  retval      : this value is returned if the object is not found and result is not NULL.
746 *
747 * DESCRIPTION:
748 *   Perform a search in the dictionary.
749 *   See the object-specific sections bellow to find how to look for each objects.
750 *   If the "result" parameter is NULL, the function is used to check if an object is in the dictionary.
751 *   Otherwise, a reference to the object is stored in result if found.
752 *   If result is not NULL and the object is not found, retval is returned (should be 0 or ENOENT usually)
753 *
754 * RETURN VALUE:
755 *  0           : The object has been found in the dictionary, or *result is NULL.
756 *  EINVAL      : A parameter is invalid.
757 *  ENOENT      : No matching object has been found, and result was NULL.
758 */
759int fd_dict_search ( struct dictionary * dict, enum dict_object_type type, int criteria, void * what, struct dict_object ** result, int retval );
760
761/* Special case: get the generic error command object */
762int fd_dict_get_error_cmd(struct dictionary * dict, struct dict_object ** obj);
763
764/*
765 * FUNCTION:    fd_dict_getval
766 *
767 * PARAMETERS:
768 *  object      : Pointer to a dictionary object.
769 *  data        : pointer to a structure to hold the data for the object.
770 *                The type is the same as "data" parameter in fd_dict_new function.
771 *
772 * DESCRIPTION:
773 *  Retrieve content of a dictionary object.
774 *  See following object sections in this header file for more information on data and parent parameters format.
775 *
776 * RETURN VALUE:
777 *  0           : The content of the object has been retrieved.
778 *  EINVAL      : A parameter is invalid.
779 */
780int fd_dict_getval ( struct dict_object * object, void * val);
781int fd_dict_gettype ( struct dict_object * object, enum dict_object_type * type);
782int fd_dict_getdict ( struct dict_object * object, struct dictionary ** dict);
783
784/* Debug functions */
785void fd_dict_dump_object(struct dict_object * obj);
786void fd_dict_dump(struct dictionary * dict);
787
788/*
789 ***************************************************************************
790 *
791 * Vendor object
792 *
793 * These types are used to manage vendors in the dictionary
794 *
795 ***************************************************************************
796 */
797
798/* Type to hold a Vendor ID: "SMI Network Management Private Enterprise Codes" (RFC3232) */
799typedef uint32_t        vendor_id_t;
800
801/* Type to hold data associated to a vendor */
802struct dict_vendor_data {
803        vendor_id_t      vendor_id;     /* ID of a vendor */
804        char            *vendor_name;   /* The name of this vendor */
805};
806
807/* The criteria for searching a vendor object in the dictionary */
808enum {
809        VENDOR_BY_ID = 10,      /* "what" points to a vendor_id_t */
810        VENDOR_BY_NAME,         /* "what" points to a string */
811        VENDOR_OF_APPLICATION   /* "what" points to a struct dict_object containing an application (see bellow) */
812};
813
814/***
815 *  API usage :
816
817Note: the value of "vendor_name" is copied when the object is created, and the string may be disposed afterwards.
818On the other side, when value is retrieved with dict_getval, the string is not copied and MUST NOT be freed. It will
819be freed automatically along with the object itself with call to dict_fini later.
820 
821- fd_dict_new:
822 The "parent" parameter is not used for vendors.
823 Sample code to create a vendor:
824 {
825         int ret;
826         struct dict_object * myvendor;
827         struct dict_vendor_data myvendordata = { 23455, "my vendor name" };  -- just an example...
828         ret = fd_dict_new ( dict, DICT_VENDOR, &myvendordata, NULL, &myvendor );
829 }
830
831- fd_dict_search:
832 Sample codes to look for a vendor object, by its id or name:
833 {
834         int ret;
835         struct dict_object * vendor_found;
836         vendor_id_t vendorid = 23455;
837         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_ID, &vendorid, &vendor_found, ENOENT);
838         - or -
839         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &vendor_found, ENOENT);
840 }
841 
842 - fd_dict_getval:
843 Sample code to retrieve the data from a vendor object:
844 {
845         int ret;
846         struct dict_object * myvendor;
847         struct dict_vendor_data myvendordata;
848         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &myvendor, ENOENT);
849         ret = fd_dict_getval ( myvendor, &myvendordata );
850         printf("my vendor id: %d\n", myvendordata.vendor_id );
851 }
852                 
853*/
854               
855/* Special function: */
856uint32_t * fd_dict_get_vendorid_list(struct dictionary * dict);
857         
858/*
859 ***************************************************************************
860 *
861 * Application object
862 *
863 * These types are used to manage Diameter applications in the dictionary
864 *
865 ***************************************************************************
866 */
867
868/* Type to hold a Diameter application ID: IANA assigned value for this application. */
869typedef uint32_t        application_id_t;
870
871/* Type to hold data associated to an application */
872struct dict_application_data {
873        application_id_t         application_id;        /* ID of the application */
874        char                    *application_name;      /* The name of this application */
875};
876
877/* The criteria for searching an application object in the dictionary */
878enum {
879        APPLICATION_BY_ID = 20,         /* "what" points to a application_id_t */
880        APPLICATION_BY_NAME,            /* "what" points to a string */
881        APPLICATION_OF_TYPE,            /* "what" points to a struct dict_object containing a type object (see bellow) */
882        APPLICATION_OF_COMMAND          /* "what" points to a struct dict_object containing a command (see bellow) */
883};
884
885/***
886 *  API usage :
887
888The "parent" parameter of dict_new may point to a vendor object to inform of what vendor defines the application.
889for standard-track applications, the "parent" parameter should be NULL.
890The vendor associated to an application is retrieved with VENDOR_OF_APPLICATION search criteria on vendors.
891
892- fd_dict_new:
893 Sample code for application creation:
894 {
895         int ret;
896         struct dict_object * vendor;
897         struct dict_object * appl;
898         struct dict_vendor_data vendor_data = {
899                 23455,
900                 "my vendor name"
901         };
902         struct dict_application_data app_data = {
903                 9789,
904                 "my vendor's application"
905         };
906       
907         ret = fd_dict_new ( dict, DICT_VENDOR, &vendor_data, NULL, &vendor );
908         ret = fd_dict_new ( dict, DICT_APPLICATION, &app_data, vendor, &appl );
909 }
910
911- fd_dict_search:
912 Sample code to retrieve the vendor of an application
913 {
914         int ret;
915         struct dict_object * vendor, * appli;
916         
917         ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
918         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_OF_APPLICATION, appli, &vendor, ENOENT);
919 }
920 
921 - fd_dict_getval:
922 Sample code to retrieve the data from an application object:
923 {
924         int ret;
925         struct dict_object * appli;
926         struct dict_application_data appl_data;
927         ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
928         ret = fd_dict_getval ( appli, &appl_data );
929         printf("my application id: %s\n", appl_data.application_id );
930 }
931
932*/
933
934/*
935 ***************************************************************************
936 *
937 * Type object
938 *
939 * These types are used to manage AVP data types in the dictionary
940 *
941 ***************************************************************************
942 */
943
944/* Type to store any AVP value */ 
945union avp_value {
946        struct {
947                uint8_t *data;  /* bytes buffer */
948                size_t   len;   /* length of the data buffer */
949        }           os;         /* Storage for an octet string, data is alloc'd and must be freed */
950        int32_t     i32;        /* integer 32 */
951        int64_t     i64;        /* integer 64 */
952        uint32_t    u32;        /* unsigned 32 */
953        uint64_t    u64;        /* unsigned 64 */
954        float       f32;        /* float 32 */
955        double      f64;        /* float 64 */
956};
957
958/* These are the basic AVP types defined in RFC3588bis */
959enum dict_avp_basetype {
960        AVP_TYPE_GROUPED,
961        AVP_TYPE_OCTETSTRING,
962        AVP_TYPE_INTEGER32,
963        AVP_TYPE_INTEGER64,
964        AVP_TYPE_UNSIGNED32,
965        AVP_TYPE_UNSIGNED64,
966        AVP_TYPE_FLOAT32,
967        AVP_TYPE_FLOAT64
968#define AVP_TYPE_MAX AVP_TYPE_FLOAT64
969};
970
971/* Callbacks that can be associated with a derived type to easily interpret the AVP value. */
972/*
973 * CALLBACK:    dict_avpdata_interpret
974 *
975 * PARAMETERS:
976 *   val         : Pointer to the AVP value that must be interpreted.
977 *   interpreted : The result of interpretation is stored here. The format and meaning depends on each type.
978 *
979 * DESCRIPTION:
980 *   This callback can be provided with a derived type in order to facilitate the interpretation of formated data.
981 *  For example, when an AVP of type "Address" is received, it can be used to convert the octetstring into a struct sockaddr.
982 *  This callback is not called directly, but through the message's API msg_avp_value_interpret function.
983 *
984 * RETURN VALUE:
985 *  0           : Operation complete.
986 *  !0          : An error occurred, the error code is returned.
987 */
988typedef int (*dict_avpdata_interpret) (union avp_value * value, void * interpreted);
989/*
990 * CALLBACK:    dict_avpdata_encode
991 *
992 * PARAMETERS:
993 *   data       : The formated data that must be stored in the AVP value.
994 *   val        : Pointer to the AVP value storage area where the data must be stored.
995 *
996 * DESCRIPTION:
997 *   This callback can be provided with a derived type in order to facilitate the encoding of formated data.
998 *  For example, it can be used to convert a struct sockaddr in an AVP value of type Address.
999 *  This callback is not called directly, but through the message's API msg_avp_value_encode function.
1000 *  If the callback is defined for an OctetString based type, the created string must be malloc'd. free will be called
1001 *  automatically later.
1002 *
1003 * RETURN VALUE:
1004 *  0           : Operation complete.
1005 *  !0          : An error occurred, the error code is returned.
1006 */
1007typedef int (*dict_avpdata_encode) (void * data, union avp_value * val);
1008
1009
1010/* Type to hold data associated to a derived AVP data type */
1011struct dict_type_data {
1012        enum dict_avp_basetype   type_base;     /* How the data of such AVP must be interpreted */
1013        char                    *type_name;     /* The name of this type */
1014        dict_avpdata_interpret   type_interpret;/* cb to convert the AVP value in more comprehensive format (or NULL) */
1015        dict_avpdata_encode      type_encode;   /* cb to convert formatted data into an AVP value (or NULL) */
1016        void                    (*type_dump)(union avp_value * val, FILE * fstr);       /* cb called by fd_msg_dump_one for this type of data (if != NULL), to dump the AVP value in fstr */
1017};
1018
1019/* The criteria for searching a type object in the dictionary */
1020enum {
1021        TYPE_BY_NAME = 30,              /* "what" points to a string */
1022        TYPE_OF_ENUMVAL,                /* "what" points to a struct dict_object containing an enumerated constant (DICT_ENUMVAL, see bellow). */
1023        TYPE_OF_AVP                     /* "what" points to a struct dict_object containing an AVP object. */
1024};
1025
1026
1027/***
1028 *  API usage :
1029
1030- fd_dict_new:
1031 The "parent" parameter may point to an application object, when a type is defined by a Diameter application.
1032 
1033 Sample code:
1034 {
1035         int ret;
1036         struct dict_object * mytype;
1037         struct dict_type_data mytypedata =
1038                {
1039                 AVP_TYPE_OCTETSTRING,
1040                 "Address",
1041                 NULL,
1042                 NULL
1043                };
1044         ret = fd_dict_new ( dict, DICT_TYPE, &mytypedata, NULL, &mytype );
1045 }
1046
1047- fd_dict_search:
1048 Sample code:
1049 {
1050         int ret;
1051         struct dict_object * address_type;
1052         ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Address", &address_type, ENOENT);
1053 }
1054 
1055*/
1056         
1057/*
1058 ***************************************************************************
1059 *
1060 * Enumerated values object
1061 *
1062 * These types are used to manage named constants of some AVP,
1063 * for enumerated types. freeDiameter allows constants for types others than Unsigned32
1064 *
1065 ***************************************************************************
1066 */
1067
1068/* Type to hold data of named constants for AVP */
1069struct dict_enumval_data {
1070        char            *enum_name;     /* The name of this constant */
1071        union avp_value  enum_value;    /* Value of the constant. Union term depends on parent type's base type. */
1072};
1073
1074/* The criteria for searching a constant in the dictionary */
1075enum {
1076        ENUMVAL_BY_STRUCT = 40, /* "what" points to a struct dict_enumval_request as defined bellow */
1077};
1078
1079struct dict_enumval_request {
1080        /* Identifier of the parent type, one of the following must not be NULL */
1081        struct dict_object      *type_obj;
1082        char                    *type_name;
1083       
1084        /* Search criteria for the constant */
1085        struct dict_enumval_data search; /* search.enum_value is used only if search.enum_name == NULL */
1086};
1087
1088/***
1089 *  API usage :
1090
1091- fd_dict_new:
1092 The "parent" parameter must point to a derived type object.
1093 Sample code to create a type "Boolean" with two constants "True" and "False":
1094 {
1095         int ret;
1096         struct dict_object * type_boolean;
1097         struct dict_type_data type_boolean_data =
1098                {
1099                 AVP_TYPE_INTEGER32,
1100                 "Boolean",
1101                 NULL,
1102                 NULL
1103                };
1104         struct dict_enumval_data boolean_false =
1105                {
1106                 .enum_name="False",
1107                 .enum_value.i32 = 0
1108                };
1109         struct dict_enumval_data boolean_true =
1110                {
1111                 .enum_name="True",
1112                 .enum_value.i32 = -1
1113                };
1114         ret = fd_dict_new ( dict, DICT_TYPE, &type_boolean_data, NULL, &type_boolean );
1115         ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_false, type_boolean, NULL );
1116         ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_true , type_boolean, NULL );
1117         
1118 }
1119
1120- fd_dict_search:
1121 Sample code to look for a constant name, by its value:
1122 {
1123         int ret;
1124         struct dict_object * value_found;
1125         struct dict_enumval_request boolean_by_value =
1126                {
1127                 .type_name = "Boolean",
1128                 .search.enum_name=NULL,
1129                 .search.enum_value.i32 = -1
1130                };
1131         
1132         ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1133 }
1134 
1135 - fd_dict_getval:
1136 Sample code to retrieve the data from a constant object:
1137 {
1138         int ret;
1139         struct dict_object * value_found;
1140         struct dict_enumval_data boolean_data = NULL;
1141         struct dict_enumval_request boolean_by_value =
1142                {
1143                 .type_name = "Boolean",
1144                 .search.enum_name=NULL,
1145                 .search.enum_value.i32 = 0
1146                };
1147         
1148         ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1149         ret = fd_dict_getval ( value_found, &boolean_data );
1150         printf(" Boolean with value 0: %s", boolean_data.enum_name );
1151 }
1152*/
1153         
1154/*
1155 ***************************************************************************
1156 *
1157 * AVP object
1158 *
1159 * These objects are used to manage AVP definitions in the dictionary
1160 *
1161 ***************************************************************************
1162 */
1163
1164/* Type to hold an AVP code. For vendor 0, these codes are assigned by IANA. Otherwise, it is managed by the vendor */
1165typedef uint32_t        avp_code_t;
1166
1167/* Values of AVP flags */
1168#define AVP_FLAG_VENDOR         0x80
1169#define AVP_FLAG_MANDATORY      0x40
1170#define AVP_FLAG_RESERVED3      0x20
1171#define AVP_FLAG_RESERVED4      0x10
1172#define AVP_FLAG_RESERVED5      0x08
1173#define AVP_FLAG_RESERVED6      0x04
1174#define AVP_FLAG_RESERVED7      0x02
1175#define AVP_FLAG_RESERVED8      0x01
1176
1177/* For dumping flags and values */
1178#define DUMP_AVPFL_str  "%c%c"
1179#define DUMP_AVPFL_val(_val) (_val & AVP_FLAG_VENDOR)?'V':'-' , (_val & AVP_FLAG_MANDATORY)?'M':'-'
1180
1181/* Type to hold data associated to an avp */
1182struct dict_avp_data {
1183        avp_code_t               avp_code;      /* Code of the avp */
1184        vendor_id_t              avp_vendor;    /* Vendor of the AVP, or 0 */
1185        char                    *avp_name;      /* Name of this AVP */
1186        uint8_t                  avp_flag_mask; /* Mask of fixed AVP flags */
1187        uint8_t                  avp_flag_val;  /* Values of the fixed flags */
1188        enum dict_avp_basetype   avp_basetype;  /* Basic type of data found in the AVP */
1189};
1190
1191/* The criteria for searching an avp object in the dictionary */
1192enum {
1193        AVP_BY_CODE = 50,       /* "what" points to an avp_code_t, vendor is always 0 */
1194        AVP_BY_NAME,            /* "what" points to a string, vendor is always 0 */
1195        AVP_BY_CODE_AND_VENDOR, /* "what" points to a struct dict_avp_request (see bellow), where avp_vendor and avp_code are set */
1196        AVP_BY_NAME_AND_VENDOR, /* "what" points to a struct dict_avp_request (see bellow), where avp_vendor and avp_name are set */
1197        AVP_BY_NAME_ALL_VENDORS /* "what" points to a string. Might be quite slow... */
1198};
1199
1200/* Struct used for some researchs */
1201struct dict_avp_request {
1202        vendor_id_t      avp_vendor;
1203        avp_code_t       avp_code;
1204        char            *avp_name;
1205};
1206
1207
1208/***
1209 *  API usage :
1210
1211If "parent" parameter is not NULL during AVP creation, it must point to a DICT_TYPE object.
1212The extended type is then attached to the AVP. In case where it is an enumerated type, the value of
1213AVP is automatically interpreted in debug messages, and in message checks.
1214The derived type of an AVP can be retrieved with: dict_search ( DICT_TYPE, TYPE_OF_AVP, avp, ... )
1215
1216To create the rules (ABNF) for children of Grouped AVP, see the DICT_RULE related part.
1217
1218- fd_dict_new:
1219 Sample code for AVP creation:
1220 {
1221         int ret;
1222         struct dict_object * user_name_avp;
1223         struct dict_object * boolean_type;
1224         struct dict_object * sample_boolean_avp;
1225         struct dict_avp_data user_name_data = {
1226                 1,                                     // code
1227                 0,                                     // vendor
1228                 "User-Name",                           // name
1229                 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY,  // fixed mask: V and M values must always be defined as follow. other flags can be set or cleared
1230                 AVP_FLAG_MANDATORY,                    // the V flag must be cleared, the M flag must be set.
1231                 AVP_TYPE_OCTETSTRING                   // User-Name AVP contains OctetString data (further precision such as UTF8String can be given with a parent derived type)
1232         };
1233         struct dict_avp_data sample_boolean_data = {
1234                 31337,
1235                 23455,
1236                 "Sample-Boolean",
1237                 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY,
1238                 AVP_FLAG_VENDOR,
1239                 AVP_TYPE_INTEGER32                     // This MUST be the same as parent type's
1240         };
1241       
1242         -- Create an AVP with a base type --
1243         ret = fd_dict_new ( dict, DICT_AVP, &user_name_data, NULL, &user_name_avp );
1244         
1245         -- Create an AVP with a derived type --
1246         ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Boolean", &boolean_type, ENOENT);
1247         ret = fd_dict_new ( dict, DICT_AVP, &sample_boolean_data , boolean_type, &sample_boolean_avp );
1248         
1249 }
1250
1251- fd_dict_search:
1252 Sample code to look for an AVP
1253 {
1254         int ret;
1255         struct dict_object * avp_username;
1256         struct dict_object * avp_sampleboolean;
1257         struct dict_avp_request avpvendorboolean =
1258                {
1259                 .avp_vendor = 23455,
1260                 .avp_name   = "Sample-Boolean"
1261                };
1262         
1263         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1264         
1265         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME_AND_VENDOR, &avpvendorboolean, &avp_sampleboolean, ENOENT);
1266         
1267 }
1268 
1269 - fd_dict_getval:
1270 Sample code to retrieve the data from an AVP object:
1271 {
1272         int ret;
1273         struct dict_object * avp_username;
1274         struct dict_avp_data user_name_data;
1275         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1276         ret = fd_dict_getval ( avp_username, &user_name_data );
1277         printf("User-Name code: %d\n", user_name_data.avp_code );
1278 }
1279
1280*/
1281
1282/*
1283 ***************************************************************************
1284 *
1285 * Command object
1286 *
1287 * These types are used to manage commands objects in the dictionary
1288 *
1289 ***************************************************************************
1290 */
1291
1292/* Type to hold a Diameter command code: IANA assigned values. 0x0-0x7fffff=standard, 0x800000-0xfffffd=vendors, 0xfffffe-0xffffff=experimental */
1293typedef uint32_t        command_code_t;
1294
1295/* Values of command flags */
1296#define CMD_FLAG_REQUEST        0x80
1297#define CMD_FLAG_PROXIABLE      0x40
1298#define CMD_FLAG_ERROR          0x20
1299#define CMD_FLAG_RETRANSMIT     0x10
1300#define CMD_FLAG_RESERVED5      0x08
1301#define CMD_FLAG_RESERVED6      0x04
1302#define CMD_FLAG_RESERVED7      0x02
1303#define CMD_FLAG_RESERVED8      0x01
1304
1305/* For dumping flags and values */
1306#define DUMP_CMDFL_str  "%c%c%c%c"
1307#define DUMP_CMDFL_val(_val) (_val & CMD_FLAG_REQUEST)?'R':'-' , (_val & CMD_FLAG_PROXIABLE)?'P':'-' , (_val & CMD_FLAG_ERROR)?'E':'-' , (_val & CMD_FLAG_RETRANSMIT)?'T':'-'
1308
1309/* Type to hold data associated to a command */
1310struct dict_cmd_data {
1311        command_code_t   cmd_code;      /* code of the command */
1312        char            *cmd_name;      /* Name of the command */
1313        uint8_t          cmd_flag_mask; /* Mask of fixed-value flags */
1314        uint8_t          cmd_flag_val;  /* values of the fixed flags */
1315};
1316
1317/* The criteria for searching an avp object in the dictionary */
1318enum {
1319        CMD_BY_NAME = 60,       /* "what" points to a string */
1320        CMD_BY_CODE_R,          /* "what" points to a command_code_t. The "Request" command is returned. */
1321        CMD_BY_CODE_A,          /* "what" points to a command_code_t. The "Answer" command is returned. */
1322        CMD_ANSWER              /* "what" points to a struct dict_object of a request command. The corresponding "Answer" command is returned. */
1323};
1324
1325
1326/***
1327 *  API usage :
1328
1329The "parent" parameter of dict_new may point to an application object to inform of what application defines the command.
1330The application associated to a command is retrieved with APPLICATION_OF_COMMAND search criteria on applications.
1331
1332To create the rules for children of commands, see the DICT_RULE related part.
1333
1334Note that the "Request" and "Answer" commands are two independant objects. This allows to have different rules for each.
1335
1336- fd_dict_new:
1337 Sample code for command creation:
1338 {
1339         int ret;
1340         struct dict_object * cer;
1341         struct dict_object * cea;
1342         struct dict_cmd_data ce_data = {
1343                 257,                                   // code
1344                 "Capabilities-Exchange-Request",       // name
1345                 CMD_FLAG_REQUEST,                      // mask
1346                 CMD_FLAG_REQUEST                       // value. Only the "R" flag is constrained here, set.
1347         };
1348       
1349         ret = fd_dict_new (dict,  DICT_COMMAND, &ce_data, NULL, &cer );
1350         
1351         ce_data.cmd_name = "Capabilities-Exchange-Answer";
1352         ce_data.cmd_flag_val = 0;                      // Same constraint on "R" flag, but this time it must be cleared.
1353
1354         ret = fd_dict_new ( dict, DICT_COMMAND, &ce_data, NULL, &cea );
1355 }
1356
1357- fd_dict_search:
1358 Sample code to look for a command
1359 {
1360         int ret;
1361         struct dict_object * cer, * cea;
1362         command_code_t code = 257;
1363         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1364         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_CODE_R, &code, &cer, ENOENT);
1365 }
1366 
1367 - fd_dict_getval:
1368 Sample code to retrieve the data from a command object:
1369 {
1370         int ret;
1371         struct dict_object * cer;
1372         struct dict_object * cea;
1373         struct dict_cmd_data cea_data;
1374         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1375         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_ANSWER, cer, &cea, ENOENT);
1376         ret = fd_dict_getval ( cea, &cea_data );
1377         printf("Answer to CER: %s\n", cea_data.cmd_name );
1378 }
1379
1380*/
1381
1382/*
1383 ***************************************************************************
1384 *
1385 * Rule object
1386 *
1387 * These objects are used to manage rules in the dictionary (ABNF implementation)
1388 * This is used for checking messages validity (more powerful than a DTD)
1389 *
1390 ***************************************************************************
1391 */
1392
1393/* This defines the kind of rule that is defined */
1394enum rule_position {
1395        RULE_FIXED_HEAD = 1,    /* The AVP must be at the head of the group. The rule_order field is used to specify the position. */
1396        RULE_REQUIRED,          /* The AVP must be present in the parent, but its position is not defined. */
1397        RULE_OPTIONAL,          /* The AVP may be present in the message. Used to specify a max number of occurences for example */
1398        RULE_FIXED_TAIL         /* The AVP must be at the end of the group. The rule_order field is used to specify the position. */
1399};
1400
1401/* Content of a RULE object data */
1402struct dict_rule_data {
1403        struct dict_object      *rule_avp;      /* Pointer to the AVP object that is concerned by this rule */
1404        enum rule_position       rule_position; /* The position in which the rule_avp must appear in the parent */
1405        unsigned                 rule_order;    /* for RULE_FIXED_* rules, the place. 1,2,3.. for HEAD rules; ...,3,2,1 for TAIL rules. */
1406        int                      rule_min;      /* Minimum number of occurences. -1 means "default": 0 for optional rules, 1 for other rules */
1407        int                      rule_max;      /* Maximum number of occurences. -1 means no maximum. 0 means the AVP is forbidden. */
1408};
1409
1410/* The criteria for searching a rule in the dictionary */
1411enum {
1412        RULE_BY_AVP_AND_PARENT = 70     /* "what" points to a struct dict_rule_request -- see bellow. This is used to query "what is the rule for this AVP in this group?" */
1413};
1414
1415/* Structure for querying the dictionary about a rule */
1416struct dict_rule_request {
1417        struct dict_object      *rule_parent;   /* The grouped avp or command to which the rule apply */
1418        struct dict_object      *rule_avp;      /* The AVP concerned by this rule */
1419};
1420
1421
1422/***
1423 *  API usage :
1424
1425The "parent" parameter can not be NULL. It points to the object (grouped avp or command) to which this rule apply (i.e. for which the ABNF is defined).
1426
1427- fd_dict_new:
1428 Sample code for rule creation. Let's create the Proxy-Info grouped AVP for example.
1429 {
1430        int ret;
1431        struct dict_object * proxy_info_avp;
1432        struct dict_object * proxy_host_avp;
1433        struct dict_object * proxy_state_avp;
1434        struct dict_object * diameteridentity_type;
1435        struct dict_rule_data rule_data;
1436        struct dict_type_data di_type_data = { AVP_TYPE_OCTETSTRING, "DiameterIdentity", NULL, NULL };
1437        struct dict_avp_data proxy_info_data = { 284, 0, "Proxy-Info", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_GROUPED };
1438        struct dict_avp_data proxy_host_data = { 280, 0, "Proxy-Host", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1439        struct dict_avp_data proxy_state_data = { 33, 0, "Proxy-State",AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1440       
1441        -- Create the parent AVP
1442        ret = fd_dict_new ( dict, DICT_AVP, &proxy_info_data, NULL, &proxy_info_avp );
1443       
1444        -- Create the first child AVP.
1445        ret = fd_dict_new ( dict, DICT_TYPE, &di_type_data, NULL, &diameteridentity_type );
1446        ret = fd_dict_new ( dict, DICT_AVP, &proxy_host_data, diameteridentity_type, &proxy_host_avp );
1447       
1448        -- Create the other child AVP
1449        ret = fd_dict_new ( dict, DICT_AVP, &proxy_state_data, NULL, &proxy_state_avp );
1450       
1451        -- Now we can create the rules. Both children AVP are mandatory.
1452        rule_data.rule_position = RULE_REQUIRED;
1453        rule_data.rule_min = -1;
1454        rule_data.rule_max = -1;
1455       
1456        rule_data.rule_avp = proxy_host_avp;
1457        ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1458       
1459        rule_data.rule_avp = proxy_state_avp;
1460        ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1461}
1462
1463- fd_dict_search and fd_dict_getval are similar to previous examples.
1464
1465*/
1466               
1467/* Define some hard-coded values */
1468/* Application */
1469#define AI_RELAY                        0xffffffff
1470
1471/* Commands Codes */
1472#define CC_CAPABILITIES_EXCHANGE        257
1473#define CC_RE_AUTH                      258
1474#define CC_ACCOUNTING                   271
1475#define CC_ABORT_SESSION                274
1476#define CC_SESSION_TERMINATION          275
1477#define CC_DEVICE_WATCHDOG              280
1478#define CC_DISCONNECT_PEER              282
1479
1480/* AVPs (Vendor 0) */
1481#define AC_USER_NAME                    1
1482#define AC_PROXY_STATE                  33
1483#define AC_HOST_IP_ADDRESS              257
1484#define AC_AUTH_APPLICATION_ID          258
1485#define AC_ACCT_APPLICATION_ID          259
1486#define AC_VENDOR_SPECIFIC_APPLICATION_ID 260
1487#define AC_REDIRECT_HOST_USAGE          261
1488#define AC_REDIRECT_MAX_CACHE_TIME      262
1489#define AC_SESSION_ID                   263
1490#define AC_ORIGIN_HOST                  264
1491#define AC_SUPPORTED_VENDOR_ID          265
1492#define AC_VENDOR_ID                    266
1493#define AC_FIRMWARE_REVISION            267
1494#define AC_RESULT_CODE                  268
1495#define AC_PRODUCT_NAME                 269
1496#define AC_DISCONNECT_CAUSE             273
1497#define ACV_DC_REBOOTING                        0
1498#define ACV_DC_BUSY                             1
1499#define ACV_DC_NOT_FRIEND                       2
1500#define AC_ORIGIN_STATE_ID              278
1501#define AC_FAILED_AVP                   279
1502#define AC_PROXY_HOST                   280
1503#define AC_ERROR_MESSAGE                281
1504#define AC_ROUTE_RECORD                 282
1505#define AC_DESTINATION_REALM            283
1506#define AC_PROXY_INFO                   284
1507#define AC_REDIRECT_HOST                292
1508#define AC_DESTINATION_HOST             293
1509#define AC_ERROR_REPORTING_HOST         294
1510#define AC_ORIGIN_REALM                 296
1511#define AC_INBAND_SECURITY_ID           299
1512#define ACV_ISI_NO_INBAND_SECURITY              0
1513#define ACV_ISI_TLS                             1
1514
1515/* Error codes from Base protocol
1516(reference: http://www.iana.org/assignments/aaa-parameters/aaa-parameters.xml#aaa-parameters-4)
1517Note that currently, rfc3588bis-26 has some different values for some of these
1518*/
1519#define ER_DIAMETER_MULTI_ROUND_AUTH                    1001
1520
1521#define ER_DIAMETER_SUCCESS                             2001
1522#define ER_DIAMETER_LIMITED_SUCCESS                     2002
1523
1524#define ER_DIAMETER_COMMAND_UNSUPPORTED                 3001 /* 5019 ? */
1525#define ER_DIAMETER_UNABLE_TO_DELIVER                   3002
1526#define ER_DIAMETER_REALM_NOT_SERVED                    3003
1527#define ER_DIAMETER_TOO_BUSY                            3004
1528#define ER_DIAMETER_LOOP_DETECTED                       3005
1529#define ER_DIAMETER_REDIRECT_INDICATION                 3006
1530#define ER_DIAMETER_APPLICATION_UNSUPPORTED             3007
1531#define ER_DIAMETER_INVALID_HDR_BITS                    3008 /* 5020 ? */
1532#define ER_DIAMETER_INVALID_AVP_BITS                    3009 /* 5021 ? */
1533#define ER_DIAMETER_UNKNOWN_PEER                        3010 /* 5018 ? */
1534
1535#define ER_DIAMETER_AUTHENTICATION_REJECTED             4001
1536#define ER_DIAMETER_OUT_OF_SPACE                        4002
1537#define ER_ELECTION_LOST                                4003
1538
1539#define ER_DIAMETER_AVP_UNSUPPORTED                     5001
1540#define ER_DIAMETER_UNKNOWN_SESSION_ID                  5002
1541#define ER_DIAMETER_AUTHORIZATION_REJECTED              5003
1542#define ER_DIAMETER_INVALID_AVP_VALUE                   5004
1543#define ER_DIAMETER_MISSING_AVP                         5005
1544#define ER_DIAMETER_RESOURCES_EXCEEDED                  5006
1545#define ER_DIAMETER_CONTRADICTING_AVPS                  5007
1546#define ER_DIAMETER_AVP_NOT_ALLOWED                     5008
1547#define ER_DIAMETER_AVP_OCCURS_TOO_MANY_TIMES           5009
1548#define ER_DIAMETER_NO_COMMON_APPLICATION               5010
1549#define ER_DIAMETER_UNSUPPORTED_VERSION                 5011
1550#define ER_DIAMETER_UNABLE_TO_COMPLY                    5012
1551#define ER_DIAMETER_INVALID_BIT_IN_HEADER               5013 /* 3011 ? */
1552#define ER_DIAMETER_INVALID_AVP_LENGTH                  5014
1553#define ER_DIAMETER_INVALID_MESSAGE_LENGTH              5015 /* 3012 ? */
1554#define ER_DIAMETER_INVALID_AVP_BIT_COMBO               5016 /* deprecated? */
1555#define ER_DIAMETER_NO_COMMON_SECURITY                  5017
1556
1557
1558/*============================================================*/
1559/*                         SESSIONS                           */
1560/*============================================================*/
1561
1562/* Modules that want to associate a state with a Session-Id must first register a handler of this type */
1563struct session_handler;
1564
1565/* This opaque structure represents a session associated with a Session-Id */
1566struct session;
1567
1568/* The state information that a module associate with a session -- each module defines its own data format */
1569typedef void session_state;
1570
1571/* The following function must be called to activate the session expiry mechanism */
1572int fd_sess_start(void);
1573
1574/*
1575 * FUNCTION:    fd_sess_handler_create
1576 *
1577 * PARAMETERS:
1578 *  handler     : location where the new handler must be stored.
1579 *  cleanup     : a callback function that must be called when the session with associated data is destroyed.
1580 *  opaque      : A pointer that is passed to the cleanup callback -- the content is never examined by the framework.
1581 *
1582 * DESCRIPTION:
1583 *  Create a new session handler. This is needed by a module to associate a state with a session object.
1584 * The cleanup handler is called when the session timeout expires, or fd_sess_destroy is called. It must free
1585 * the state associated with the session, and eventually trig other actions (send a STR, ...).
1586 *
1587 * RETURN VALUE:
1588 *  0           : The new handler has been created.
1589 *  EINVAL      : A parameter is invalid.
1590 *  ENOMEM      : Not enough memory to complete the operation
1591 */
1592int fd_sess_handler_create_internal ( struct session_handler ** handler, void (*cleanup)(session_state * state, char * sid, void * opaque), void * opaque );
1593/* Macro to avoid casting everywhere */
1594#define fd_sess_handler_create( _handler, _cleanup, _opaque ) \
1595        fd_sess_handler_create_internal( (_handler), (void (*)(session_state *, char *, void *))(_cleanup), (void *)(_opaque) )
1596
1597       
1598/*
1599 * FUNCTION:    fd_sess_handler_destroy
1600 *
1601 * PARAMETERS:
1602 *  handler     : location of an handler created by fd_sess_handler_create.
1603 *  opaque      : the opaque pointer registered with the callback is restored here (if ! NULL).
1604 *
1605 * DESCRIPTION:
1606 *  This destroys a session handler (typically called when an application is shutting down).
1607 * If sessions states are registered with this handler, the cleanup callback is called on them.
1608 *
1609 * RETURN VALUE:
1610 *  0           : The handler was destroyed.
1611 *  EINVAL      : A parameter is invalid.
1612 *  ENOMEM      : Not enough memory to complete the operation
1613 */
1614int fd_sess_handler_destroy ( struct session_handler ** handler, void **opaque );
1615
1616
1617
1618/*
1619 * FUNCTION:    fd_sess_new
1620 *
1621 * PARAMETERS:
1622 *  session       : The location where the session object will be created upon success.
1623 *  diamId        : \0-terminated string containing a Diameter Identity.
1624 *  opt           : Additional string. Usage is described bellow.
1625 *  optlen        : if opt is \0-terminated, this can be 0. Otherwise, the length of opt.
1626 *
1627 * DESCRIPTION:
1628 *   Create a new session object. The Session-Id string associated with this session is generated as follow:
1629 *  If diamId parameter is provided, the string is created according to the RFC: <diamId>;<high32>;<low32>[;opt] where
1630 *    diamId is a Diameter Identity.
1631 *    high32 and low32 are the parts of a monotonic 64 bits counter initialized to (time, 0) at startup.
1632 *    opt is an optional string that can be concatenated to the identifier.
1633 *  If diamId is NULL, the string is exactly the content of opt.
1634 *
1635 * RETURN VALUE:
1636 *  0           : The session is created.
1637 *  EINVAL      : A parameter is invalid.
1638 *  EALREADY    : A session with the same name already exists (returned in *session)
1639 *  ENOMEM      : Not enough memory to complete the operation
1640 */
1641int fd_sess_new ( struct session ** session, char * diamId, char * opt, size_t optlen );
1642
1643/*
1644 * FUNCTION:    fd_sess_fromsid
1645 *
1646 * PARAMETERS:
1647 *  sid         : pointer to a string containing a Session-Id (UTF-8).
1648 *  len         : length of the sid string (which does not need to be '\0'-terminated)
1649 *  session     : On success, pointer to the session object created / retrieved.
1650 *  isnew       : if not NULL, set to 1 on return if the session object has been created, 0 if it was simply retrieved.
1651 *
1652 * DESCRIPTION:
1653 *   Retrieve a session object from a Session-Id string. In case no session object was previously existing with this
1654 *  id, a new object is silently created (equivalent to fd_sess_new with flag SESSION_NEW_FULL).
1655 *
1656 * RETURN VALUE:
1657 *  0           : The session parameter has been updated.
1658 *  EINVAL      : A parameter is invalid.
1659 *  ENOMEM      : Not enough memory to complete the operation
1660 */
1661int fd_sess_fromsid ( char * sid, size_t len, struct session ** session, int * isnew);
1662
1663/*
1664 * FUNCTION:    fd_sess_getsid
1665 *
1666 * PARAMETERS:
1667 *  session     : Pointer to a session object.
1668 *  sid         : On success, the location of a (\0-terminated) string is stored here.
1669 *
1670 * DESCRIPTION:
1671 *   Retrieve the session identifier (Session-Id) corresponding to a session object.
1672 *  The returned sid is an UTF-8 string terminated by \0, suitable for calls to strlen and strcpy.
1673 *  It may be used for example to set the value of an AVP.
1674 *  Note that the sid string is not copied, just its reference... do not free it!
1675 *
1676 * RETURN VALUE:
1677 *  0           : The sid parameter has been updated.
1678 *  EINVAL      : A parameter is invalid.
1679 */
1680int fd_sess_getsid ( struct session * session, char ** sid );
1681
1682/*
1683 * FUNCTION:    fd_sess_settimeout
1684 *
1685 * PARAMETERS:
1686 *  session     : The session for which to set the timeout.
1687 *  timeout     : The date when the session times out.
1688 *
1689 * DESCRIPTION:
1690 *   Set the lifetime for a given session object. This function may be
1691 * called several times on the same object to update the timeout value.
1692 *   When the timeout date is reached, the cleanup handler of each
1693 * module that registered data with this session is called, then the
1694 * session is cleared.
1695 *
1696 *   There is a possible race condition between cleanup of the session
1697 * and use of its data; applications should ensure that they are not
1698 * using data from a session that is about to expire / expired.
1699 *
1700 * RETURN VALUE:
1701 *  0           : The session timeout has been updated.
1702 *  EINVAL      : A parameter is invalid.
1703 */
1704int fd_sess_settimeout( struct session * session, const struct timespec * timeout );
1705
1706/*
1707 * FUNCTION:    fd_sess_destroy
1708 *
1709 * PARAMETERS:
1710 *  session     : Pointer to a session object.
1711 *
1712 * DESCRIPTION:
1713 *   Destroys a session an all associated data, if any.
1714 * Equivalent to a session timeout expired, but the effect is immediate.
1715 *
1716 * RETURN VALUE:
1717 *  0           : The session no longer exists.
1718 *  EINVAL      : A parameter is invalid.
1719 */
1720int fd_sess_destroy ( struct session ** session );
1721
1722/*
1723 * FUNCTION:    fd_sess_reclaim
1724 *
1725 * PARAMETERS:
1726 *  session     : Pointer to a session object.
1727 *
1728 * DESCRIPTION:
1729 *   Destroys the resources of a session, only if no session_state is associated with it.
1730 *
1731 * RETURN VALUE:
1732 *  0           : The session no longer exists.
1733 *  EINVAL      : A parameter is invalid.
1734 */
1735int fd_sess_reclaim ( struct session ** session );
1736
1737
1738
1739
1740/*
1741 * FUNCTION:    fd_sess_state_store
1742 *
1743 * PARAMETERS:
1744 *  handler     : The handler with which the state is registered.
1745 *  session     : The session object with which the state is registered.
1746 *  state       : An application state (opaque data) to store with the session.
1747 *
1748 * DESCRIPTION:
1749 *  Stores an application state with a session. This state can later be retrieved
1750 * with fd_sess_state_retrieve, or implicitly in the cleanup handler when the session
1751 * is destroyed.
1752 *
1753 * RETURN VALUE:
1754 *  0           : The state has been stored.
1755 *  EINVAL      : A parameter is invalid.
1756 *  EALREADY    : Data was already associated with this session and client.
1757 *  ENOMEM      : Not enough memory to complete the operation
1758 */
1759int fd_sess_state_store_internal ( struct session_handler * handler, struct session * session, session_state ** state );
1760#define fd_sess_state_store( _handler, _session, _state ) \
1761        fd_sess_state_store_internal( (_handler), (_session), (void *)(_state) )
1762
1763/*
1764 * FUNCTION:    fd_sess_state_retrieve
1765 *
1766 * PARAMETERS:
1767 *  handler     : The handler with which the state was registered.
1768 *  session     : The session object with which the state was registered.
1769 *  state       : Location where the state must be saved if it is found.
1770 *
1771 * DESCRIPTION:
1772 *  Retrieves a state saved by fd_sess_state_store.
1773 * After this function has been called, the state is no longer associated with
1774 * the session. A new call to fd_sess_state_store must be performed in order to
1775 * store again the data with the session.
1776 *
1777 * RETURN VALUE:
1778 *  0           : *state is updated (NULL or points to the state if it was found).
1779 *  EINVAL      : A parameter is invalid.
1780 */
1781int fd_sess_state_retrieve_internal ( struct session_handler * handler, struct session * session, session_state ** state ); 
1782#define fd_sess_state_retrieve( _handler, _session, _state ) \
1783        fd_sess_state_retrieve_internal( (_handler), (_session), (void *)(_state) )
1784
1785
1786/* For debug */
1787void fd_sess_dump(int level, struct session * session);
1788void fd_sess_dump_hdl(int level, struct session_handler * handler);
1789
1790/*============================================================*/
1791/*                         ROUTING                            */
1792/*============================================================*/
1793
1794/* The following functions are helpers for the routing module.
1795  The routing data is stored in the message itself. */
1796
1797/* Structure that contains the routing data for a message */
1798struct rt_data;
1799
1800/* Following functions are helpers to create the routing data of a message */
1801int  fd_rtd_init(struct rt_data ** rtd);
1802void fd_rtd_free(struct rt_data ** rtd);
1803
1804/* Add a peer to the candidates list */
1805int  fd_rtd_candidate_add(struct rt_data * rtd, char * peerid, char * realm);
1806
1807/* Remove a peer from the candidates (if it is found) */
1808void fd_rtd_candidate_del(struct rt_data * rtd, char * peerid, size_t sz /* if !0, peerid does not need to be \0 terminated */);
1809
1810/* Extract the list of valid candidates, and initialize their scores to 0 */
1811void fd_rtd_candidate_extract(struct rt_data * rtd, struct fd_list ** candidates, int ini_score);
1812
1813/* If a peer returned a protocol error for this message, save it so that we don't try to send it there again */
1814int  fd_rtd_error_add(struct rt_data * rtd, char * sentto, uint8_t * origin, size_t originsz, uint32_t rcode);
1815
1816/* The extracted list items have the following structure: */
1817struct rtd_candidate {
1818        struct fd_list  chain;  /* link in the list returned by the previous fct */
1819        char *          diamid; /* the diameter Id of the peer */
1820        char *          realm;  /* the diameter realm of the peer (if known) */
1821        int             score;  /* the current routing score for this peer, see fd_rt_out_register definition for details */
1822};
1823
1824/* Reorder the list of peers */
1825int  fd_rtd_candidate_reorder(struct fd_list * candidates);
1826
1827/* Note : it is fine for a callback to add a new entry in the candidates list after the list has been extracted. The diamid must then be malloc'd. */
1828/* Beware that this could lead to routing loops */
1829
1830/*============================================================*/
1831/*                         MESSAGES                           */
1832/*============================================================*/
1833
1834/* The following types are opaque */
1835struct  msg;    /* A message: command with children AVPs (possibly grand children) */
1836struct  avp;    /* AVP object */
1837
1838/* Some details about chaining:
1839 *
1840 *  A message is made of a header ( msg ) and 0 or more AVPs ( avp ).
1841 * The structure is a kind of tree, where some AVPs (grouped AVPs) can contain other AVPs.
1842 * Exemple:
1843 * msg
1844 *  |-avp
1845 *  |-gavp
1846 *  |   |-avp
1847 *  |   |-avp
1848 *  |   \-avp
1849 *  |-avp
1850 *  \-avp
1851 *
1852 */
1853
1854/* The following type is used to point to either a msg or an AVP */
1855typedef void msg_or_avp;
1856
1857/* The Diameter protocol version */
1858#define DIAMETER_VERSION        1
1859
1860/* In the two following types, some fields are marked (READONLY).
1861 * This means that the content of these fields will be overwritten by the daemon so modifying it is useless.
1862 */
1863
1864/* The following structure represents the header of a message. All data is in host byte order. */
1865struct msg_hdr {
1866        uint8_t          msg_version;           /* (READONLY) Version of Diameter: must be DIAMETER_VERSION. */
1867        uint32_t         msg_length;            /* (READONLY)(3 bytes) indicates the length of the message */
1868        uint8_t          msg_flags;             /* Message flags: CMD_FLAG_* */
1869        command_code_t   msg_code;              /* (3 bytes) the command-code. See dictionary-api.h for more detail */
1870        application_id_t msg_appl;              /* The application issuing this message */
1871        uint32_t         msg_hbhid;             /* The Hop-by-Hop identifier of the message */
1872        uint32_t         msg_eteid;             /* The End-to-End identifier of the message */
1873};
1874
1875/* The following structure represents the visible content of an AVP. All data is in host byte order. */
1876struct avp_hdr {
1877        avp_code_t       avp_code;              /* the AVP Code */
1878        uint8_t          avp_flags;             /* AVP_FLAG_* flags */
1879        uint32_t         avp_len;               /* (READONLY)(Only 3 bytes are used) the length of the AVP as described in the RFC */
1880        vendor_id_t      avp_vendor;            /* Only used if AVP_FLAG_VENDOR is present */
1881        union avp_value *avp_value;             /* pointer to the value of the AVP. NULL means that the value is not set / not understood.
1882                                                   One should not directly change this value. Use the msg_avp_setvalue function instead.
1883                                                   The content of the pointed structure can be changed directly, with this restriction:
1884                                                     if the AVP is an OctetString, and you change the value of the pointer avp_value->os.data, then
1885                                                     you must call free() on the previous value, and the new one must be free()-able.
1886                                                 */
1887};
1888
1889/* The following enum is used to browse inside message hierarchy (msg, gavp, avp) */
1890enum msg_brw_dir {
1891        MSG_BRW_NEXT = 1,       /* Get the next element at the same level, or NULL if this is the last element. */
1892        MSG_BRW_PREV,           /* Get the previous element at the same level, or NULL if this is the first element. */
1893        MSG_BRW_FIRST_CHILD,    /* Get the first child AVP of this element, if any. */
1894        MSG_BRW_LAST_CHILD,     /* Get the last child AVP of this element, if any. */
1895        MSG_BRW_PARENT,         /* Get the parent element of this element, if any. Only the msg_t object has no parent. */
1896        MSG_BRW_WALK            /* This is equivalent to FIRST_CHILD or NEXT or PARENT->next, first that is not NULL. Use this to walk inside all AVPs. */
1897};
1898
1899/* Some flags used in the functions bellow */
1900#define AVPFL_SET_BLANK_VALUE   0x01    /* When creating an AVP, initialize its value to a blank area */
1901#define AVPFL_MAX               AVPFL_SET_BLANK_VALUE   /* The biggest valid flag value */
1902       
1903#define MSGFL_ALLOC_ETEID       0x01    /* When creating a message, a new end-to-end ID is allocated and set in the message */
1904#define MSGFL_ANSW_ERROR        0x02    /* When creating an answer message, set the 'E' bit and use the generic error ABNF instead of command-specific ABNF */
1905#define MSGFL_ANSW_NOSID        0x04    /* When creating an answer message, do not add the Session-Id even if present in request */
1906#define MSGFL_MAX               MSGFL_ANSW_NOSID        /* The biggest valid flag value */
1907
1908/**************************************************/
1909/*   Message creation, manipulation, disposal     */
1910/**************************************************/
1911/*
1912 * FUNCTION:    fd_msg_avp_new
1913 *
1914 * PARAMETERS:
1915 *  model       : Pointer to a DICT_AVP dictionary object describing the avp to create, or NULL.
1916 *  flags       : Flags to use in creation (AVPFL_*).
1917 *  avp         : Upon success, pointer to the new avp is stored here.
1918 *
1919 * DESCRIPTION:
1920 *   Create a new AVP instance.
1921 *
1922 * RETURN VALUE:
1923 *  0           : The AVP is created.
1924 *  EINVAL      : A parameter is invalid.
1925 *  (other standard errors may be returned, too, with their standard meaning. Example:
1926 *    ENOMEM    : Memory allocation for the new avp failed.)
1927 */
1928int fd_msg_avp_new ( struct dict_object * model, int flags, struct avp ** avp );
1929
1930/*
1931 * FUNCTION:    fd_msg_new
1932 *
1933 * PARAMETERS:
1934 *  model       : Pointer to a DICT_COMMAND dictionary object describing the message to create, or NULL.
1935 *  flags       : combination of MSGFL_* flags.
1936 *  msg         : Upon success, pointer to the new message is stored here.
1937 *
1938 * DESCRIPTION:
1939 *   Create a new empty Diameter message.
1940 *
1941 * RETURN VALUE:
1942 *  0           : The message is created.
1943 *  EINVAL      : A parameter is invalid.
1944 *  (other standard errors may be returned, too, with their standard meaning. Example:
1945 *    ENOMEM    : Memory allocation for the new message failed.)
1946 */
1947int fd_msg_new ( struct dict_object * model, int flags, struct msg ** msg );
1948
1949/*
1950 * FUNCTION:    msg_new_answer_from_req
1951 *
1952 * PARAMETERS:
1953 *  dict        : Pointer to the dictionary containing the model of the query.
1954 *  msg         : The location of the query on function call. Updated by the location of answer message on return.
1955 *  flag        : Pass MSGFL_ANSW_ERROR to indicate if the answer is an error message (will set the 'E' bit)
1956 *
1957 * DESCRIPTION:
1958 *   This function creates the empty answer message corresponding to a request.
1959 *  The header is set properly (R flag, ccode, appid, hbhid, eteid)
1960 *  The Session-Id AVP is copied if present.
1961 *  The calling code should usually call fd_msg_rescode_set function on the answer.
1962 *  Upon return, the original query may be retrieved by calling fd_msg_answ_getq on the message.
1963 *
1964 * RETURN VALUE:
1965 *  0           : Operation complete.
1966 *  !0          : an error occurred.
1967 */
1968int fd_msg_new_answer_from_req ( struct dictionary * dict, struct msg ** msg, int flag );
1969
1970/*
1971 * FUNCTION:    fd_msg_browse
1972 *
1973 * PARAMETERS:
1974 *  reference   : Pointer to a struct msg or struct avp.
1975 *  dir         : Direction for browsing
1976 *  found       : If not NULL, updated with the element that has been found, if any, or NULL if no element was found / an error occurred.
1977 *  depth       : If not NULL, points to an integer representing the "depth" of this object in the tree. This is a relative value, updated on return.
1978 *
1979 * DESCRIPTION:
1980 *   Explore the content of a message object (hierarchy). If "found" is null, only error checking is performed.
1981 *  If "depth" is provided, it is updated as follow on successful function return:
1982 *   - not modified for MSG_BRW_NEXT and MSG_BRW_PREV.
1983 *   - *depth = *depth + 1 for MSG_BRW_FIRST_CHILD and MSG_BRW_LAST_CHILD.
1984 *   - *depth = *depth - 1 for MSG_BRW_PARENT.
1985 *   - *depth = *depth + X for MSG_BRW_WALK, with X between 1 (returned the 1st child) and -N (returned the Nth parent's next).
1986 *
1987 * RETURN VALUE:
1988 *  0           : found has been updated (if non NULL).
1989 *  EINVAL      : A parameter is invalid.
1990 *  ENOENT      : No element has been found where requested, and "found" was NULL (otherwise, *found is set to NULL and 0 is returned).
1991 */
1992int fd_msg_browse_internal ( msg_or_avp * reference, enum msg_brw_dir dir, msg_or_avp ** found, int * depth );
1993/* Macro to avoid having to cast the third parameter everywhere */
1994#define fd_msg_browse( ref, dir, found, depth ) \
1995        fd_msg_browse_internal( (ref), (dir), (void *)(found), (depth) )
1996
1997
1998/*
1999 * FUNCTION:    fd_msg_avp_add
2000 *
2001 * PARAMETERS:
2002 *  reference   : Pointer to a valid msg or avp.
2003 *  dir         : location where the new AVP should be inserted, relative to the reference. MSG_BRW_PARENT and MSG_BRW_WALK are not valid.
2004 *  avp         : pointer to the AVP object that must be inserted.
2005 *
2006 * DESCRIPTION:
2007 *   Adds an AVP into an object that can contain it: grouped AVP or message.
2008 * Note that the added AVP will be freed at the same time as the object it is added to,
2009 * so it should not be freed after the call to this function.
2010 *
2011 * RETURN VALUE:
2012 *  0           : The AVP has been added.
2013 *  EINVAL      : A parameter is invalid.
2014 */
2015int fd_msg_avp_add ( msg_or_avp * reference, enum msg_brw_dir dir, struct avp *avp);
2016
2017/*
2018 * FUNCTION:    fd_msg_search_avp
2019 *
2020 * PARAMETERS:
2021 *  msg         : The message structure in which to search the AVP.
2022 *  what        : The dictionary model of the AVP to search.
2023 *  avp         : location where the AVP reference is stored if found.
2024 *
2025 * DESCRIPTION:
2026 *   Search the first top-level AVP of a given model inside a message.
2027 * Note: only the first instance of the AVP is returned by this function.
2028 * Note: only top-level AVPs are searched, not inside grouped AVPs.
2029 * Use msg_browse if you need more advanced research features.
2030 *
2031 * RETURN VALUE:
2032 *  0           : The AVP has been found.
2033 *  EINVAL      : A parameter is invalid.
2034 *  ENOENT      : No AVP has been found, and "avp" was NULL (otherwise, *avp is set to NULL and 0 returned).
2035 */
2036int fd_msg_search_avp ( struct msg * msg, struct dict_object * what, struct avp ** avp );
2037
2038/*
2039 * FUNCTION:    fd_msg_free
2040 *
2041 * PARAMETERS:
2042 *  object      : pointer to the message or AVP object that must be unlinked and freed.
2043 *
2044 * DESCRIPTION:
2045 *   Unlink and free a message or AVP object and its children.
2046 *  If the object is an AVP linked into a message, the AVP is removed before being freed.
2047 *
2048 * RETURN VALUE:
2049 *  0           : The message has been freed.
2050 *  EINVAL      : A parameter is invalid.
2051 */
2052int fd_msg_free ( msg_or_avp * object );
2053
2054/***************************************/
2055/*   Dump functions                    */
2056/***************************************/
2057/*
2058 * FUNCTION:    fd_msg_dump_*
2059 *
2060 * PARAMETERS:
2061 *  level       : the log level (INFO, FULL, ...) at which the object is dumped
2062 *  obj         : A msg or avp object.
2063 *
2064 * DESCRIPTION:
2065 *   These functions dump the content of a message to the debug log
2066 * either recursively or only the object itself.
2067 *
2068 * RETURN VALUE:
2069 *   -
2070 */
2071void fd_msg_dump_walk ( int level, msg_or_avp *obj );
2072void fd_msg_dump_one  ( int level, msg_or_avp *obj );
2073
2074/*
2075 * FUNCTION:    fd_msg_log
2076 *
2077 * PARAMETERS:
2078 *  cause        : Context for calling this function. This allows the log facility to be configured precisely.
2079 *  msg          : The message to log.
2080 *  prefix_format: Printf-style format message that is printed ahead of the message. Might be reason for drop or so.
2081 *
2082 * DESCRIPTION:
2083 *   This function is called when a Diameter message reaches some particular points in the fD framework.
2084 * The actual effect is configurable: log in a separate file, dump in the debug log, etc.
2085 *
2086 * RETURN VALUE:
2087 *   -
2088 */
2089enum fd_msg_log_cause {
2090        FD_MSG_LOG_DROPPED = 0,  /* message has been dropped by the framework */ 
2091        FD_MSG_LOG_RECEIVED,     /* message received from the network */ 
2092        FD_MSG_LOG_SENT,         /* message sent to another peer */ 
2093        FD_MSG_LOG_NODELIVER     /* message could not be delivered to any peer */ 
2094};
2095#define FD_MSG_LOG_MAX FD_MSG_LOG_NODELIVER
2096void fd_msg_log( enum fd_msg_log_cause cause, struct msg * msg, const char * prefix_format, ... );
2097
2098/* configure the msg_log facility */
2099enum fd_msg_log_method {
2100        FD_MSG_LOGTO_DEBUGONLY = 0, /* Simply log the message with other debug information, at the INFO level. This is default */
2101        FD_MSG_LOGTO_FILE,    /* Messages are dumped in a single file, defined in arg */
2102        FD_MSG_LOGTO_DIR    /* Messages are dumped in different files within one directory defined in arg. */
2103};
2104int fd_msg_log_config(enum fd_msg_log_cause cause, enum fd_msg_log_method method, const char * arg);
2105void fd_msg_log_init(struct dictionary *dict);
2106
2107/*********************************************/
2108/*   Message metadata management functions   */
2109/*********************************************/
2110/*
2111 * FUNCTION:    fd_msg_model
2112 *
2113 * PARAMETERS:
2114 *  reference   : Pointer to a valid msg or avp.
2115 *  model       : on success, pointer to the dictionary model of this command or AVP. NULL if the model is unknown.
2116 *
2117 * DESCRIPTION:
2118 *   Retrieve the dictionary object describing this message or avp. If the object is unknown or the fd_msg_parse_dict has not been called,
2119 *  *model is set to NULL.
2120 *
2121 * RETURN VALUE:
2122 *  0           : The model has been set.
2123 *  EINVAL      : A parameter is invalid.
2124 */
2125int fd_msg_model ( msg_or_avp * reference, struct dict_object ** model );
2126
2127/*
2128 * FUNCTION:    fd_msg_hdr
2129 *
2130 * PARAMETERS:
2131 *  msg         : Pointer to a valid message object.
2132 *  pdata       : Upon success, pointer to the msg_hdr structure of this message. The fields may be modified.
2133 *
2134 * DESCRIPTION:
2135 *   Retrieve location of modifiable section of a message.
2136 *
2137 * RETURN VALUE:
2138 *  0           : The location has been written.
2139 *  EINVAL      : A parameter is invalid.
2140 */
2141int fd_msg_hdr ( struct msg *msg, struct msg_hdr ** pdata );
2142
2143/*
2144 * FUNCTION:    fd_msg_avp_hdr
2145 *
2146 * PARAMETERS:
2147 *  avp         : Pointer to a valid avp object.
2148 *  pdata       : Upon success, pointer to the avp_hdr structure of this avp. The fields may be modified.
2149 *
2150 * DESCRIPTION:
2151 *   Retrieve location of modifiable data of an avp.
2152 *
2153 * RETURN VALUE:
2154 *  0           : The location has been written.
2155 *  EINVAL      : A parameter is invalid.
2156 */
2157int fd_msg_avp_hdr ( struct avp *avp, struct avp_hdr ** pdata );
2158
2159/*
2160 * FUNCTION:    fd_msg_answ_associate, fd_msg_answ_getq, fd_msg_answ_detach
2161 *
2162 * PARAMETERS:
2163 *  answer      : the received answer message
2164 *  query       : the corresponding query that had been sent
2165 *
2166 * DESCRIPTION:
2167 *  fd_msg_answ_associate associates a query msg with the received answer.
2168 * Query is retrieved with fd_msg_answ_getq.
2169 * If answer message is freed, the query is also freed.
2170 * If the msg_answ_detach function is called, the association is removed.
2171 * This is meant to be called from the daemon only.
2172 *
2173 * RETURN VALUE:
2174 *  0     : ok
2175 *  EINVAL: a parameter is invalid
2176 */
2177int fd_msg_answ_associate( struct msg * answer, struct msg * query );
2178int fd_msg_answ_getq     ( struct msg * answer, struct msg ** query );
2179int fd_msg_answ_detach   ( struct msg * answer );
2180
2181/*
2182 * FUNCTION:    fd_msg_anscb_associate, fd_msg_anscb_get
2183 *
2184 * PARAMETERS:
2185 *  msg         : the answer message
2186 *  anscb       : the callback to associate with the message
2187 *  data        : the data to pass to the callback
2188 *  timeout     : (optional, use NULL if no timeout) a timeout associated with calling the cb.
2189 *
2190 * DESCRIPTION:
2191 *  Associate or retrieve a callback with an answer message.
2192 * This is meant to be called from the daemon only.
2193 *
2194 * RETURN VALUE:
2195 *  0     : ok
2196 *  EINVAL: a parameter is invalid
2197 */
2198int fd_msg_anscb_associate( struct msg * msg, void ( *anscb)(void *, struct msg **), void  * data, const struct timespec *timeout );
2199int fd_msg_anscb_get      ( struct msg * msg, void (**anscb)(void *, struct msg **), void ** data );
2200struct timespec *fd_msg_anscb_gettimeout( struct msg * msg ); /* returns NULL or a valid non-0 timespec */
2201
2202/*
2203 * FUNCTION:    fd_msg_rt_associate, fd_msg_rt_get
2204 *
2205 * PARAMETERS:
2206 *  msg         : the query message to be sent
2207 *  list        : the ordered list of possible next-peers
2208 *
2209 * DESCRIPTION:
2210 *  Associate a routing list with a query, and retrieve it.
2211 * If the message is freed, the list is also freed.
2212 *
2213 * RETURN VALUE:
2214 *  0     : ok
2215 *  EINVAL: a parameter is invalid
2216 */
2217int fd_msg_rt_associate( struct msg * msg, struct rt_data ** rtd );
2218int fd_msg_rt_get      ( struct msg * msg, struct rt_data ** rtd );
2219
2220/*
2221 * FUNCTION:    fd_msg_is_routable
2222 *
2223 * PARAMETERS:
2224 *  msg         : A msg object.
2225 *
2226 * DESCRIPTION:
2227 *   This function returns a boolean telling if a given message is routable in the Diameter network,
2228 *  or if it is a local link message only (ex: CER/CEA, DWR/DWA, ...).
2229 *
2230 * RETURN VALUE:
2231 *  0           : The message is not routable / an error occurred.
2232 *  1           : The message is routable.
2233 */
2234int fd_msg_is_routable ( struct msg * msg );
2235
2236/*
2237 * FUNCTION:    fd_msg_source_(g/s)et
2238 *
2239 * PARAMETERS:
2240 *  msg         : A msg object.
2241 *  diamid      : The diameter id of the peer from which this message was received.
2242 *  add_rr      : if true, a Route-Record AVP is added to the message with content diamid. In that case, dict must be supplied.
2243 *  dict        : a dictionary with definition of Route-Record AVP (if add_rr is true)
2244 *
2245 * DESCRIPTION:
2246 *   Store or retrieve the diameted id of the peer from which this message was received.
2247 * Will be used for example by the routing module to add the Route-Record AVP in forwarded requests,
2248 * or to direct answers to the appropriate peer.
2249 *
2250 * RETURN VALUE:
2251 *  0           : Operation complete.
2252 *  !0          : an error occurred.
2253 */
2254int fd_msg_source_set( struct msg * msg, char * diamid, int add_rr, struct dictionary * dict );
2255int fd_msg_source_get( struct msg * msg, char ** diamid );
2256
2257/*
2258 * FUNCTION:    fd_msg_eteid_get
2259 *
2260 * PARAMETERS:
2261 *  -
2262 *
2263 * DESCRIPTION:
2264 *   Get a new unique end-to-end id value for the local peer.
2265 *
2266 * RETURN VALUE:
2267 *  The new assigned value. No error code is defined.
2268 */
2269uint32_t fd_msg_eteid_get ( void );
2270
2271
2272/*
2273 * FUNCTION:    fd_msg_sess_get
2274 *
2275 * PARAMETERS:
2276 *  dict        : the dictionary that contains the Session-Id AVP definition
2277 *  msg         : A valid message.
2278 *  session     : Location to store the session pointer when retrieved.
2279 *  isnew       : Indicates if the session has been created.
2280 *
2281 * DESCRIPTION:
2282 *  This function retrieves or creates the session object corresponding to a message.
2283 * If the message does not contain a Session-Id AVP, *session == NULL on return.
2284 * Note that the Session-Id AVP must never be modified after created in a message.
2285 *
2286 * RETURN VALUE:
2287 *  0 : success
2288 * !0 : standard error code.
2289 */
2290int fd_msg_sess_get(struct dictionary * dict, struct msg * msg, struct session ** session, int * isnew);
2291
2292/***************************************/
2293/*   Manage AVP values                 */
2294/***************************************/
2295
2296/*
2297 * FUNCTION:    fd_msg_avp_setvalue
2298 *
2299 * PARAMETERS:
2300 *  avp         : Pointer to a valid avp object with a NULL avp_value pointer. The model must be known.
2301 *  value       : pointer to an avp_value. The content will be COPIED into the internal storage area.
2302 *               If data type is an octetstring, the data is also copied.
2303 *               If value is a NULL pointer, the previous data is erased and value is unset in the AVP.
2304 *
2305 * DESCRIPTION:
2306 *   Initialize the avp_value field of an AVP header.
2307 *
2308 * RETURN VALUE:
2309 *  0           : The avp_value pointer has been set.
2310 *  EINVAL      : A parameter is invalid.
2311 */
2312int fd_msg_avp_setvalue ( struct avp *avp, union avp_value *value );
2313
2314/*
2315 * FUNCTION:    fd_msg_avp_value_encode
2316 *
2317 * PARAMETERS:
2318 *  avp         : Pointer to a valid avp object with a NULL avp_value. The model must be known.
2319 *  data        : Pointer to the data that must be encoded as AVP value and stored in the AVP.
2320 *               This is only valid for AVPs of derived type for which type_data_encode callback is set. (ex: Address type)
2321 *
2322 * DESCRIPTION:
2323 *   Initialize the avp_value field of an AVP object from formatted data, using the AVP's type "type_data_encode" callback.
2324 *
2325 * RETURN VALUE:
2326 *  0           : The avp_value has been set.
2327 *  EINVAL      : A parameter is invalid.
2328 *  ENOTSUP     : There is no appropriate callback registered with this AVP's type.
2329 */
2330int fd_msg_avp_value_encode ( void *data, struct avp *avp );
2331/*
2332 * FUNCTION:    fd_msg_avp_value_interpret
2333 *
2334 * PARAMETERS:
2335 *  avp         : Pointer to a valid avp object with a non-NULL avp_value value.
2336 *  data        : Upon success, formatted interpretation of the AVP value is stored here.
2337 *
2338 * DESCRIPTION:
2339 *   Interpret the content of an AVP of Derived type and store the result in data pointer. The structure
2340 * of the data pointer is dependent on the AVP type. This function calls the "type_data_interpret" callback
2341 * of the type.
2342 *
2343 * RETURN VALUE:
2344 *  0           : The avp_value has been set.
2345 *  EINVAL      : A parameter is invalid.
2346 *  ENOTSUP     : There is no appropriate callback registered with this AVP's type.
2347 */
2348int fd_msg_avp_value_interpret ( struct avp *avp, void *data );
2349
2350
2351/***************************************/
2352/*   Message parsing functions         */
2353/***************************************/
2354
2355/*
2356 * FUNCTION:    fd_msg_bufferize
2357 *
2358 * PARAMETERS:
2359 *  msg         : A valid msg object. All AVPs must have a value set.
2360 *  buffer      : Upon success, this points to a buffer (malloc'd) containing the message ready for network transmission (or security transformations).
2361 *               The buffer may be freed after use.
2362 *  len         : if not NULL, the size of the buffer is written here. In any case, this size is updated in the msg header.
2363 *
2364 * DESCRIPTION:
2365 *   Renders a message in memory as a buffer that can be sent over the network to the next peer.
2366 *
2367 * RETURN VALUE:
2368 *  0           : The location has been written.
2369 *  EINVAL      : The buffer does not contain a valid Diameter message.
2370 *  ENOMEM      : Unable to allocate enough memory to create the buffer object.
2371 */
2372int fd_msg_bufferize ( struct msg * msg, unsigned char ** buffer, size_t * len );
2373
2374/*
2375 * FUNCTION:    fd_msg_parse_buffer
2376 *
2377 * PARAMETERS:
2378 *  buffer      : Pointer to a buffer containing a message received from the network.
2379 *  buflen      : the size in bytes of the buffer.
2380 *  msg         : Upon success, this points to a valid msg object. No AVP value is resolved in this object, nor grouped AVP.
2381 *
2382 * DESCRIPTION:
2383 *   This function parses a buffer an creates a msg object to represent the structure of the message.
2384 *  Since no dictionary lookup is performed, the values of the AVPs are not interpreted. To interpret the values,
2385 *  the returned message object must be passed to fd_msg_parse_dict function.
2386 *  The buffer pointer is saved inside the message and will be freed when not needed anymore.
2387 *
2388 * RETURN VALUE:
2389 *  0           : The location has been written.
2390 *  ENOMEM      : Unable to allocate enough memory to create the msg object.
2391 *  EBADMSG     : The buffer does not contain a valid Diameter message (or is truncated).
2392 *  EINVAL      : A parameter is invalid.
2393 */
2394int fd_msg_parse_buffer ( unsigned char ** buffer, size_t buflen, struct msg ** msg );
2395
2396/* Parsing Error Information structure */
2397struct fd_pei {
2398        char *          pei_errcode;    /* name of the error code to use */
2399        struct avp *    pei_avp;        /* pointer to invalid or missing AVP (to be freed) */
2400        char *          pei_message;    /* Overwrite default message if needed */
2401        int             pei_protoerr;   /* do we set the 'E' bit in the error message ? */
2402};
2403
2404/*
2405 * FUNCTION:    fd_msg_parse_dict
2406 *
2407 * PARAMETERS:
2408 *  object      : A msg or AVP object as returned by fd_msg_parse_buffer.
2409 *  dict        : the dictionary containing the objects definitions to use for resolving all AVPs.
2410 *  error_info  : If not NULL, will contain the detail about error upon return. May be used to generate an error reply.
2411 *
2412 * DESCRIPTION:
2413 *   This function looks up for the command and each children AVP definitions in the dictionary.
2414 *  If the dictionary definition is found, avp_model is set and the value of the AVP is interpreted accordingly and:
2415 *   - for grouped AVPs, the children AVP are created and interpreted also.
2416 *   - for numerical AVPs, the value is converted to host byte order and saved in the avp_value field.
2417 *   - for octetstring AVPs, the string is copied into a new buffer and its address is saved in avp_value.
2418 *  If the dictionary definition is not found, avp_model is set to NULL and
2419 *  the content of the AVP is saved as an octetstring in an internal structure. avp_value is NULL.
2420 *  As a result, after this function has been called, there is no more dependency of the msg object to the message buffer, that is freed.
2421 *
2422 * RETURN VALUE:
2423 *  0           : The message has been fully parsed as described.
2424 *  EINVAL      : The msg parameter is invalid for this operation.
2425 *  ENOMEM      : Unable to allocate enough memory to complete the operation.
2426 *  ENOTSUP     : No dictionary definition for the command or one of the mandatory AVP was found.
2427 */
2428int fd_msg_parse_dict ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info );
2429
2430/*
2431 * FUNCTION:    fd_msg_parse_rules
2432 *
2433 * PARAMETERS:
2434 *  object      : A msg or grouped avp object that must be verified.
2435 *  dict        : The dictionary containing the rules definitions.
2436 *  error_info  : If not NULL, the first problem information will be saved here.
2437 *
2438 * DESCRIPTION:
2439 *   Check that the children of the object do not conflict with the dictionary rules (ABNF compliance).
2440 *
2441 * RETURN VALUE:
2442 *  0           : The message has been fully parsed and complies to the defined rules.
2443 *  EBADMSG     : A conflict was detected, or a mandatory AVP is unknown in the dictionary.
2444 *  EINVAL      : The msg or avp object is invalid for this operation.
2445 *  ENOMEM      : Unable to allocate enough memory to complete the operation.
2446 */
2447int fd_msg_parse_rules ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info);
2448
2449
2450
2451/*
2452 * FUNCTION:    fd_msg_update_length
2453 *
2454 * PARAMETERS:
2455 *  object      : Pointer to a valid msg or avp.
2456 *
2457 * DESCRIPTION:
2458 *   Update the length field of the object passed as parameter.
2459 * As a side effect, all children objects are also updated. Therefore, all avp_value fields of
2460 * the children AVPs must be set, or an error will occur.
2461 *
2462 * RETURN VALUE:
2463 *  0           : The size has been recomputed.
2464 *  EINVAL      : A parameter is invalid.
2465 */
2466int fd_msg_update_length ( msg_or_avp * object );
2467
2468
2469/*============================================================*/
2470/*                         DISPATCH                           */
2471/*============================================================*/
2472
2473/* Dispatch module (passing incoming messages to extensions registered callbacks)
2474 * is split between the library and the daemon.
2475 *
2476 * The library provides the support for associating dispatch callbacks with
2477 * dictionary objects.
2478 *
2479 * The daemon is responsible for calling the callbacks for a message when appropriate.
2480 *
2481 *
2482 * The dispatch module has two main roles:
2483 *  - help determine if a message can be handled locally (during the routing step)
2484 *        This decision involves only the application-id of the message.
2485 *  - pass the message to the callback(s) that will handle it (during the dispatch step)
2486 *
2487 * The first role is handled by the daemon.
2488 *
2489 * About the second, these are the possibilities for registering a dispatch callback:
2490 *
2491 * -> For All messages.
2492 *  This callback is called for all messages that are handled locally. This should be used only
2493 *  for debug purpose.
2494 *
2495 * -> by AVP value (constants only).
2496 *  This callback will be called when a message is received and contains an AVP with a specified enumerated value.
2497 *
2498 * -> by AVP.
2499 *  This callback will be called when the received message contains a certain AVP.
2500 *
2501 * -> by command-code.
2502 *  This callback will be called when the message is a specific command (and 'R' flag).
2503 *
2504 * -> by application.
2505 *  This callback will be called when the message has a specific application-id.
2506 *
2507 * ( by vendor: would this be useful? it may be added later)
2508 */
2509enum disp_how {
2510        DISP_HOW_ANY = 1,               /* Any message. This should be only used for debug. */
2511        DISP_HOW_APPID,                 /* Any message with the specified application-id */
2512        DISP_HOW_CC,                    /* Messages of the specified command-code (request or answer). App id may be specified. */
2513        DISP_HOW_AVP,                   /* Messages containing a specific AVP. Command-code and App id may be specified. */
2514        DISP_HOW_AVP_ENUMVAL            /* Messages containing a specific AVP with a specific enumerated value. Command-code and App id may be specified. */
2515};
2516/*
2517 * Several criteria may be selected at the same time, for example command-code AND application id.
2518 *
2519 * If several callbacks are registered for the same object, they are called in the order they were registered.
2520 * The order in which the callbacks are called is:
2521 *  DISP_HOW_ANY
2522 *  DISP_HOW_AVP_ENUMVAL & DISP_HOW_AVP
2523 *  DISP_HOW_CC
2524 *  DISP_HOW_APPID
2525 */
2526
2527/* When a callback is registered, a "when" argument is passed in addition to the disp_how value,
2528 * to specify which values the criteria must match. */
2529struct disp_when {
2530        struct dict_object *    app;
2531        struct dict_object *    command;
2532        struct dict_object *    avp;
2533        struct dict_object *    value;
2534};
2535
2536/* Note that all the dictionary objects should really belong to the same dictionary!
2537 *
2538 * Here is the details on this "when" argument, depending on the disp_how value.
2539 *
2540 * DISP_HOW_ANY.
2541 *  In this case, "when" must be NULL.
2542 *
2543 * DISP_HOW_APPID.
2544 *  Only the "app_id" field must be set, other fields are ignored. It points to a dictionary object of type DICT_APPLICATION.
2545 *
2546 * DISP_HOW_CC.
2547 *  The "command" field must be defined and point to a dictionary object of type DICT_COMMAND.
2548 *  The "app_id" may be also set. In the case it is set, it restricts the callback to be called only with this command-code and app id.
2549 *  The other fields are ignored.
2550 *
2551 * DISP_HOW_AVP.
2552 *  The "avp" field of the structure must be set and point to a dictionary object of type DICT_AVP.
2553 *  The "app_id" field may be set to restrict the messages matching to a specific app id.
2554 *  The "command" field may also be set to a valid DICT_COMMAND object.
2555 *  The content of the "value" field is ignored.
2556 *
2557 * DISP_HOW_AVP_ENUMVAL.
2558 *  All fields have the same constraints and meaning as in DISP_REG_AVP. In addition, the "value" field must be set
2559 *  and points to a valid DICT_ENUMVAL object.
2560 *
2561 * Here is a sumary of the fields: ( M : must be set; m : may be set; 0 : ignored )
2562 *  field:     app_id    command     avp    value
2563 * APPID :       M          0         0       0
2564 * CC    :       m          M         0       0
2565 * AVP   :       m          m         M       0
2566 * ENUMVA:       m          m         M       M
2567 */
2568
2569enum disp_action {
2570        DISP_ACT_CONT,  /* The next handler should be called, unless *msg == NULL. */
2571        DISP_ACT_SEND,  /* The updated message must be sent. No further callback is called. */
2572        DISP_ACT_ERROR  /* An error must be created and sent as a reply -- not valid for callbacks, only for fd_msg_dispatch. */
2573};
2574/* The callbacks that are registered have the following prototype:
2575 *      int dispatch_callback( struct msg ** msg, struct avp * avp, struct session * session, enum disp_action * action );
2576 *
2577 * CALLBACK:    dispatch_callback
2578 *
2579 * PARAMETERS:
2580 *  msg         : the received message on function entry. may be updated to answer on return (see description)
2581 *  avp         : for callbacks registered with DISP_HOW_AVP or DISP_HOW_AVP_ENUMVAL, direct link to the triggering AVP.
2582 *  session     : if the message contains a Session-Id AVP, the corresponding session object, NULL otherwise.
2583 *  opaque      : An opaque pointer that is registered along the session handler.
2584 *  action      : upon return, this tells the daemon what to do next.
2585 *
2586 * DESCRIPTION:
2587 *   Called when a received message matchs the condition for which the callback was registered.
2588 * This callback may do any kind of processing on the message, including:
2589 *  - create an answer for a request.
2590 *  - proxy a request or message, add / remove the Proxy-Info AVP, then forward the message.
2591 *  - update a routing table or start a connection with a new peer, then forward the message.
2592 *  - ...
2593 *
2594 * When *action == DISP_ACT_SEND on callback return, the msg pointed by *msg is passed to the routing module for sending.
2595 * When *action == DISP_ACT_CONT, the next registered callback is called.
2596 *  When the last callback gives also DISP_ACT_CONT action value, a default handler is called. It's behavior is as follow:
2597 *   - if the message is an answer, it is discarded.
2598 *   - if the message is a request, it is passed again to the routing stack, and marked as non-local handling.
2599 *
2600 * RETURN VALUE:
2601 *  0           : The callback executed successfully and updated *action appropriately.
2602 *  !0          : standard errors. In case of error, the message is discarded.
2603 */
2604
2605/* This structure represents a handler for a registered callback, allowing its de-registration */
2606struct disp_hdl;
2607
2608/*
2609 * FUNCTION:    fd_disp_register
2610 *
2611 * PARAMETERS:
2612 *  cb            : The callback function to register (see dispatch_callback description above).
2613 *  how           : How the callback must be registered.
2614 *  when          : Values that must match, depending on the how argument.
2615 *  opaque        : A pointer that is passed back to the handler. The content is not interpreted by the framework.
2616 *  handle        : On success, a handler to the registered callback is stored here if not NULL.
2617 *                 This handler can be used to unregister the cb.
2618 *
2619 * DESCRIPTION:
2620 *   Register a new callback to handle messages delivered locally.
2621 *
2622 * RETURN VALUE:
2623 *  0           : The callback is registered.
2624 *  EINVAL      : A parameter is invalid.
2625 *  ENOMEM      : Not enough memory to complete the operation
2626 */
2627int fd_disp_register ( int (*cb)( struct msg **, struct avp *, struct session *, void *, enum disp_action *), 
2628                        enum disp_how how, struct disp_when * when, void * opaque, struct disp_hdl ** handle );
2629
2630/*
2631 * FUNCTION:    fd_disp_unregister
2632 *
2633 * PARAMETERS:
2634 *  handle       : Location of the handle of the callback that must be unregistered.
2635 *  opaque       : If not NULL, the opaque data that was registered is restored here.
2636 *
2637 * DESCRIPTION:
2638 *   Removes a callback previously registered by fd_disp_register.
2639 *
2640 * RETURN VALUE:
2641 *  0           : The callback is unregistered.
2642 *  EINVAL      : A parameter is invalid.
2643 */
2644int fd_disp_unregister ( struct disp_hdl ** handle, void ** opaque );
2645
2646/* Destroy all handlers */
2647void fd_disp_unregister_all ( void );
2648
2649/*
2650 * FUNCTION:    fd_msg_dispatch
2651 *
2652 * PARAMETERS:
2653 *  msg         : A msg object that have already been fd_msg_parse_dict.
2654 *  session     : The session corresponding to this object, if any.
2655 *  action      : Upon return, the action that must be taken on the message
2656 *
2657 * DESCRIPTION:
2658 *   Call all handlers registered for a given message.
2659 *  The session must have already been resolved on entry.
2660 *  The msg pointed may be updated during this process.
2661 *  Upon return, the action parameter points to what must be done next.
2662 *
2663 * RETURN VALUE:
2664 *  0           : Success.
2665 *  EINVAL      : A parameter is invalid.
2666 *  (other errors)
2667 */
2668int fd_msg_dispatch ( struct msg ** msg, struct session * session, enum disp_action *action, const char ** error_code );
2669
2670
2671
2672/*============================================================*/
2673/*                     QUEUES                                 */
2674/*============================================================*/
2675
2676/* Management of FIFO queues of elements */
2677
2678/* A queue is an opaque object */
2679struct fifo;
2680
2681/*
2682 * FUNCTION:    fd_fifo_new
2683 *
2684 * PARAMETERS:
2685 *  queue       : Upon success, a pointer to the new queue is saved here.
2686 *
2687 * DESCRIPTION:
2688 *  Create a new empty queue.
2689 *
2690 * RETURN VALUE :
2691 *  0           : The queue has been initialized successfully.
2692 *  EINVAL      : The parameter is invalid.
2693 *  ENOMEM      : Not enough memory to complete the creation. 
2694 */
2695int fd_fifo_new ( struct fifo ** queue );
2696
2697/*
2698 * FUNCTION:    fd_fifo_del
2699 *
2700 * PARAMETERS:
2701 *  queue       : Pointer to an empty queue to delete.
2702 *
2703 * DESCRIPTION:
2704 *  Destroys a queue. This is only possible if no thread is waiting for an element,
2705 * and the queue is empty.
2706 *
2707 * RETURN VALUE:
2708 *  0           : The queue has been destroyed successfully.
2709 *  EINVAL      : The parameter is invalid.
2710 */
2711int fd_fifo_del ( struct fifo  ** queue );
2712
2713/*
2714 * FUNCTION:    fd_fifo_move
2715 *
2716 * PARAMETERS:
2717 *  oldq        : Location of a FIFO that is to be emptied.
2718 *  newq        : A FIFO that will receive the old data.
2719 *  loc_update  : if non NULL, a place to store the pointer to new FIFO atomically with the move.
2720 *
2721 * DESCRIPTION:
2722 *  Empties a queue and move its content to another one atomically.
2723 *
2724 * RETURN VALUE:
2725 *  0           : The queue has been destroyed successfully.
2726 *  EINVAL      : A parameter is invalid.
2727 */
2728int fd_fifo_move ( struct fifo * oldq, struct fifo * newq, struct fifo ** loc_update );
2729
2730/*
2731 * FUNCTION:    fd_fifo_length
2732 *
2733 * PARAMETERS:
2734 *  queue       : The queue from which to retrieve the number of elements.
2735 *  length      : Upon success, the current number of elements in the queue is stored here.
2736 *
2737 * DESCRIPTION:
2738 *  Retrieve the number of elements in a queue.
2739 *
2740 * RETURN VALUE:
2741 *  0           : The length of the queue has been written.
2742 *  EINVAL      : A parameter is invalid.
2743 */
2744int fd_fifo_length ( struct fifo * queue, int * length );
2745int fd_fifo_length_noerr ( struct fifo * queue ); /* no error checking version */
2746
2747/*
2748 * FUNCTION:    fd_fifo_setthrhd
2749 *
2750 * PARAMETERS:
2751 *  queue       : The queue for which the thresholds are being set.
2752 *  data        : An opaque pointer that is passed to h_cb and l_cb callbacks.
2753 *  high        : The high-level threshold. If the number of elements in the queue increase to this value, h_cb is called.
2754 *  h_cb        : if not NULL, a callback to call when the queue lengh is bigger than "high".
2755 *  low         : The low-level threshold. Must be < high.
2756 *  l_cb        : If the number of elements decrease to low, this callback is called.
2757 *
2758 * DESCRIPTION:
2759 *  This function allows to adjust the number of producer / consumer threads of a queue.
2760 * If the consumer are slower than the producers, the number of elements in the queue increase.
2761 * By setting a "high" value, we allow a callback to be called when this number is too high.
2762 * The typical use would be to create an additional consumer thread in this callback.
2763 * If the queue continues to grow, the callback will be called again when the length is 2 * high, then 3*high, ... N * high
2764 * (the callback itself should implement a limit on the number of consumers that can be created)
2765 * When the queue starts to decrease, and the number of elements go under ((N - 1) * high + low, the l_cb callback is called
2766 * and would typially stop one of the consumer threads. If the queue continues to reduce, l_cb is again called at (N-2)*high + low,
2767 * and so on.
2768 *
2769 * Since there is no destructor for the data pointer, if cleanup operations are required, they should be performed in
2770 * l_cb when the length of the queue is becoming < low.
2771 *
2772 * Note that the callbacks are called synchronously, during fd_fifo_post or fd_fifo_get. Their operation should be quick.
2773 *
2774 * RETURN VALUE:
2775 *  0           : The thresholds have been set
2776 *  EINVAL      : A parameter is invalid.
2777 */
2778int fd_fifo_setthrhd ( struct fifo * queue, void * data, uint16_t high, void (*h_cb)(struct fifo *, void **), uint16_t low, void (*l_cb)(struct fifo *, void **) );
2779
2780/*
2781 * FUNCTION:    fd_fifo_post
2782 *
2783 * PARAMETERS:
2784 *  queue       : The queue in which the element must be posted.
2785 *  item        : The element that is put in the queue.
2786 *
2787 * DESCRIPTION:
2788 *  An element is added in a queue. Elements are retrieved from the queue in FIFO order
2789 *  with the fd_fifo_get, fd_fifo_tryget, or fd_fifo_timedget functions.
2790 *
2791 * RETURN VALUE:
2792 *  0           : The element is queued.
2793 *  EINVAL      : A parameter is invalid.
2794 *  ENOMEM      : Not enough memory to complete the operation.
2795 */
2796int fd_fifo_post_int ( struct fifo * queue, void ** item );
2797#define fd_fifo_post(queue, item) \
2798        fd_fifo_post_int((queue), (void *)(item))
2799
2800/*
2801 * FUNCTION:    fd_fifo_get
2802 *
2803 * PARAMETERS:
2804 *  queue       : The queue from which the first element must be retrieved.
2805 *  item        : On return, the first element of the queue is stored here.
2806 *
2807 * DESCRIPTION:
2808 *  This function retrieves the first element from a queue. If the queue is empty, the function will block the
2809 * thread until a new element is posted to the queue, or until the thread is canceled (in which case the
2810 * function does not return).
2811 *
2812 * RETURN VALUE:
2813 *  0           : A new element has been retrieved.
2814 *  EINVAL      : A parameter is invalid.
2815 */
2816int fd_fifo_get_int ( struct fifo * queue, void ** item );
2817#define fd_fifo_get(queue, item) \
2818        fd_fifo_get_int((queue), (void *)(item))
2819
2820/*
2821 * FUNCTION:    fd_fifo_tryget
2822 *
2823 * PARAMETERS:
2824 *  queue       : The queue from which the element must be retrieved.
2825 *  item        : On return, the first element of the queue is stored here.
2826 *
2827 * DESCRIPTION:
2828 *  This function is similar to fd_fifo_get, except that it will not block if
2829 * the queue is empty, but return EWOULDBLOCK instead.
2830 *
2831 * RETURN VALUE:
2832 *  0           : A new element has been retrieved.
2833 *  EINVAL      : A parameter is invalid.
2834 *  EWOULDBLOCK : The queue was empty.
2835 */
2836int fd_fifo_tryget_int ( struct fifo * queue, void ** item );
2837#define fd_fifo_tryget(queue, item) \
2838        fd_fifo_tryget_int((queue), (void *)(item))
2839
2840/*
2841 * FUNCTION:    fd_fifo_timedget
2842 *
2843 * PARAMETERS:
2844 *  queue       : The queue from which the element must be retrieved.
2845 *  item        : On return, the element is stored here.
2846 *  abstime     : the absolute time until which we allow waiting for an item.
2847 *
2848 * DESCRIPTION:
2849 *  This function is similar to fd_fifo_get, except that it will block if the queue is empty
2850 * only until the absolute time abstime (see pthread_cond_timedwait for + info).
2851 * If the queue is still empty when the time expires, the function returns ETIMEDOUT
2852 *
2853 * RETURN VALUE:
2854 *  0           : A new item has been retrieved.
2855 *  EINVAL      : A parameter is invalid.
2856 *  ETIMEDOUT   : The time out has passed and no item has been received.
2857 */
2858int fd_fifo_timedget_int ( struct fifo * queue, void ** item, const struct timespec *abstime );
2859#define fd_fifo_timedget(queue, item, abstime) \
2860        fd_fifo_timedget_int((queue), (void *)(item), (abstime))
2861
2862/* Dump a fifo list and optionally its inner elements -- beware of deadlocks! */
2863void fd_fifo_dump(int level, char * name, struct fifo * queue, void (*dump_item)(int level, void * item));
2864
2865#endif /* _LIBFDPROTO_H */
Note: See TracBrowser for help on using the repository browser.