Navigation


source: freeDiameter/include/freeDiameter/libfdproto.h @ 706:4ffbc9f1e922

Last change on this file since 706:4ffbc9f1e922 was 706:4ffbc9f1e922, checked in by Sebastien Decugis <sdecugis@nict.go.jp>, 11 years ago

Large UNTESTED commit with the following changes:

  • Improved DiameterIdentity? handling (esp. interationalization issues), and improve efficiency of some string operations in peers, sessions, and dictionary modules (closes #7)
  • Cleanup in the session module to free only unreferenced sessions (#16)
  • Removed fd_cpu_flush_cache(), replaced by more robust alternatives.
  • Improved peer state machine algorithm to counter SCTP multistream race condition.
File size: 109.2 KB
Line 
1/*********************************************************************************************************
2* Software License Agreement (BSD License)                                                               *
3* Author: Sebastien Decugis <sdecugis@nict.go.jp>                                                        *
4*                                                                                                        *
5* Copyright (c) 2011, WIDE Project and NICT                                                              *
6* All rights reserved.                                                                                   *
7*                                                                                                        *
8* Redistribution and use of this software in source and binary forms, with or without modification, are  *
9* permitted provided that the following conditions are met:                                              *
10*                                                                                                        *
11* * Redistributions of source code must retain the above                                                 *
12*   copyright notice, this list of conditions and the                                                    *
13*   following disclaimer.                                                                                *
14*                                                                                                        *
15* * Redistributions in binary form must reproduce the above                                              *
16*   copyright notice, this list of conditions and the                                                    *
17*   following disclaimer in the documentation and/or other                                               *
18*   materials provided with the distribution.                                                            *
19*                                                                                                        *
20* * Neither the name of the WIDE Project or NICT nor the                                                 *
21*   names of its contributors may be used to endorse or                                                  *
22*   promote products derived from this software without                                                  *
23*   specific prior written permission of WIDE Project and                                                *
24*   NICT.                                                                                                *
25*                                                                                                        *
26* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED *
27* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
28* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR *
29* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT     *
30* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS    *
31* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
32* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY S_OUT OF THE USE OF THIS SOFTWARE, EVEN IF   *
33* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                                                             *
34*********************************************************************************************************/
35
36/* This file contains the definitions of functions and types used by the libfreeDiameter library.
37 *
38 * This library is meant to be used by both the freeDiameter daemon and its extensions.
39 * It provides the tools to manipulate Diameter messages and related data.
40 * This file should always be included as #include <freeDiameter/libfreeDiameter.h>
41 *
42 * If any change is made to this file, you must increment the FD_PROJECT_VERSION_API version.
43 *
44 * The file contains the following parts:
45 *      DEBUG
46 *      MACROS
47 *      OCTET STRINGS
48 *      THREADS
49 *      LISTS
50 *      DICTIONARY
51 *      SESSIONS
52 *      MESSAGES
53 *      DISPATCH
54 *      QUEUES
55 */
56
57#ifndef _LIBFDPROTO_H
58#define _LIBFDPROTO_H
59
60#ifndef FD_IS_CONFIG
61#error "You must include 'freeDiameter-host.h' before this file."
62#endif /* FD_IS_CONFIG */
63
64#include <pthread.h>
65#include <sched.h>
66#include <string.h>
67#include <assert.h>
68#include <errno.h>
69#include <netinet/in.h>
70#include <arpa/inet.h>
71#include <sys/socket.h>
72#include <netdb.h>
73#include <stdio.h>
74#include <stdlib.h>
75#include <unistd.h>
76
77#ifdef DEBUG
78#include <libgen.h>     /* for basename if --dbg_file is specified */
79#endif /* DEBUG */
80
81/*============================================================*/
82/*                          INIT                              */
83/*============================================================*/
84
85/* This function must be called first, before any call to another library function */
86int fd_libproto_init(void); /* note if you are using libfdcore, it handles this already */
87
88/* Call this one when the application terminates, to destroy internal threads */
89void fd_libproto_fini(void);
90
91
92/*============================================================*/
93/*                          DEBUG                             */
94/*============================================================*/
95
96
97/*
98 * FUNCTION:    fd_log_debug_fstr
99 * MACRO:       fd_log_debug
100 *
101 * PARAMETERS:
102 *  fstr        : Stream where the text will be sent (default: stdout)
103 *  format      : Same format string as in the printf function
104 *  ...         : Same list as printf
105 *
106 * DESCRIPTION:
107 *  Log internal information for use of developpers only.
108 * The format and arguments may contain UTF-8 encoded data. The
109 * output medium (file or console) is expected to support this encoding.
110 *
111 * This function assumes that a global mutex called "fd_log_lock" exists
112 * in the address space of the current process.
113 *
114 * RETURN VALUE:
115 *  None.
116 */
117void fd_log_debug_fstr ( FILE * fstr, const char * format, ... );
118#define fd_log_debug(format,args...) fd_log_debug_fstr(NULL, format, ## args)
119
120extern pthread_mutex_t  fd_log_lock;
121extern char * fd_debug_one_function;
122extern char * fd_debug_one_file;
123
124/*
125 * FUNCTION:    fd_log_threadname
126 *
127 * PARAMETERS:
128 *  name        : \0-terminated string containing a name to identify the current thread.
129 *
130 * DESCRIPTION:
131 *  Name the current thread, useful for debugging multi-threaded problems.
132 *
133 * This function assumes that a global thread-specific key called "fd_log_thname" exists
134 * in the address space of the current process.
135 *
136 * RETURN VALUE:
137 *  None.
138 */
139void fd_log_threadname ( char * name );
140extern pthread_key_t    fd_log_thname;
141
142/*
143 * FUNCTION:    fd_log_time
144 *
145 * PARAMETERS:
146 *  ts          : The timestamp to log, or NULL for "now"
147 *  buf         : An array where the time must be stored
148 *  len         : size of the buffer
149 *
150 * DESCRIPTION:
151 *  Writes the timestamp (in human readable format) in a buffer.
152 *
153 * RETURN VALUE:
154 *  pointer to buf.
155 */
156char * fd_log_time ( struct timespec * ts, char * buf, size_t len );
157
158
159/*============================================================*/
160/*                    DEBUG MACROS                            */
161/*============================================================*/
162
163#ifndef ASSERT
164#define ASSERT(x) assert(x)
165#endif /* ASSERT */
166
167/* levels definitions */
168#define NONE 0  /* Display no debug message */
169#define INFO 1  /* Display errors only */
170#define FULL 2  /* Display additional information to follow code execution */
171#define ANNOYING 4 /* Very verbose, for example in loops */
172#define FCTS 6  /* Display entry parameters of most functions */
173#define CALL 9  /* Display calls to most functions (with CHECK macros) */
174
175/* Default level is INFO */
176#ifndef TRACE_LEVEL
177#define TRACE_LEVEL INFO
178#endif /* TRACE_LEVEL */
179
180/* The level of the file being compiled. */
181static int local_debug_level = TRACE_LEVEL;
182
183/* A global level, changed by configuration or cmd line for example. default is 0. */
184extern int fd_g_debug_lvl;
185
186/* Some portability code to get nice function name in __PRETTY_FUNCTION__ */
187#if __STDC_VERSION__ < 199901L
188# if __GNUC__ >= 2
189#  define __func__ __FUNCTION__
190# else /* __GNUC__ >= 2 */
191#  define __func__ "<unknown>"
192# endif /* __GNUC__ >= 2 */
193#endif /* __STDC_VERSION__ < 199901L */
194#ifndef __PRETTY_FUNCTION__
195#define __PRETTY_FUNCTION__ __func__
196#endif /* __PRETTY_FUNCTION__ */
197
198/* A version of __FILE__ without the full path */
199static char * file_bname = NULL;
200#define __STRIPPED_FILE__       (file_bname ?: (file_bname = basename((char *)__FILE__)))
201
202
203/* Boolean for tracing at a certain level */
204#ifdef DEBUG
205#define TRACE_BOOL(_level_) ( ((_level_) <= local_debug_level + fd_g_debug_lvl)                                         \
206                                || (fd_debug_one_function && !strcmp(fd_debug_one_function, __PRETTY_FUNCTION__))       \
207                                || (fd_debug_one_file && !strcmp(fd_debug_one_file, __STRIPPED_FILE__) ) )
208#else /* DEBUG */
209#define TRACE_BOOL(_level_) ((_level_) <= local_debug_level + fd_g_debug_lvl)
210#endif /* DEBUG */
211
212
213/*************
214 The general debug macro, each call results in two lines of debug messages (change the macro for more compact output)
215 *************/
216#ifdef DEBUG
217/* In DEBUG mode, we add (a lot of) meta-information along each trace. This makes multi-threading problems easier to debug. */
218#define TRACE_DEBUG(level,format,args... ) {                                                                                    \
219        if ( TRACE_BOOL(level) ) {                                                                                              \
220                char __buf[25];                                                                                                 \
221                const char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                 \
222                fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
223                          "\t%s|%*s" format "\n",                                                                               \
224                                        __thn, fd_log_time(NULL, __buf, sizeof(__buf)), __PRETTY_FUNCTION__, __FILE__, __LINE__,\
225                                        (level < FULL)?"@":" ",level, "", ## args);                                             \
226        }                                                                                                                       \
227}
228#else /* DEBUG */
229/* Do not print thread, function, ... only the message itself in this case, unless the debug level is set > FULL. */
230#define TRACE_DEBUG(level,format,args... ) {                                                                                            \
231        if ( TRACE_BOOL(level) ) {                                                                                                      \
232                if (fd_g_debug_lvl > FULL) {                                                                                            \
233                        char __buf[25];                                                                                                 \
234                        const char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                 \
235                        fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
236                                  "\t%s|%*s" format "\n",                                                                               \
237                                                __thn, fd_log_time(NULL, __buf, sizeof(__buf)), __PRETTY_FUNCTION__, __FILE__, __LINE__,\
238                                                (level < FULL)?"@":" ",level, "", ## args);                                             \
239                } else {                                                                                                                \
240                        fd_log_debug(format "\n", ## args);                                                                             \
241                }                                                                                                                       \
242        }                                                                                                                               \
243}
244#endif /* DEBUG */
245
246/*************
247 Derivatives from this macro
248 ************/
249/* Helper for function entry -- for very detailed trace of the execution */
250#define TRACE_ENTRY(_format,_args... ) \
251        TRACE_DEBUG(FCTS, "[enter] %s(" _format ") {" #_args "}", __PRETTY_FUNCTION__, ##_args );
252
253/* Helper for debugging by adding traces -- for debuging a specific location of the code */
254#define TRACE_HERE()    \
255        TRACE_DEBUG(NONE, " -- debug checkpoint %d -- ", fd_breakhere());
256int fd_breakhere(void);
257
258/* Helper for tracing the CHECK_* macros bellow -- very very verbose code execution! */
259#define TRACE_DEBUG_ALL( str )  \
260        TRACE_DEBUG(CALL, str );
261
262/* For development only, to keep track of TODO locations in the code */
263#ifndef ERRORS_ON_TODO
264#define TODO( _msg, _args... ) \
265        TRACE_DEBUG(NONE, "TODO: " _msg , ##_args);
266#else /* ERRORS_ON_TODO */
267#define TODO( _msg, _args... ) \
268        "TODO" = _msg ## _args; /* just a stupid compilation error to spot the todo */
269#endif /* ERRORS_ON_TODO */
270
271/* Trace a binary buffer content */
272#define TRACE_DEBUG_BUFFER(level, prefix, buf, bufsz, suffix ) {                                                                \
273        if ( TRACE_BOOL(level) ) {                                                                                              \
274                char __ts[25];                                                                                                  \
275                int __i;                                                                                                        \
276                size_t __sz = (size_t)(bufsz);                                                                                  \
277                uint8_t * __buf = (uint8_t *)(buf);                                                                             \
278                char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                       \
279                fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
280                          "\t%s|%*s" prefix ,                                                                                   \
281                                        __thn, fd_log_time(NULL, __ts, sizeof(__ts)), __PRETTY_FUNCTION__, __FILE__, __LINE__,  \
282                                        (level < FULL)?"@":" ",level, "");                                                      \
283                for (__i = 0; __i < __sz; __i++) {                                                                              \
284                        fd_log_debug("%02.2hhx", __buf[__i]);                                                                   \
285                }                                                                                                               \
286                fd_log_debug(suffix "\n");                                                                                      \
287        }                                                                                                                       \
288}
289
290/* Some aliases to socket addresses structures */
291#define sSS     struct sockaddr_storage
292#define sSA     struct sockaddr
293#define sSA4    struct sockaddr_in
294#define sSA6    struct sockaddr_in6
295
296/* The sockaddr length of a sSS structure */
297#define sSAlen( _sa_ )  \
298        ( (socklen_t) ( (((sSA *)_sa_)->sa_family == AF_INET) ? (sizeof(sSA4)) :                \
299                                ((((sSA *)_sa_)->sa_family == AF_INET6) ? (sizeof(sSA6)) :      \
300                                        0 ) ) )
301
302/* Dump one sockaddr Node information */
303#define sSA_DUMP_NODE( sa, flag ) {                             \
304        sSA * __sa = (sSA *)(sa);                               \
305        char __addrbuf[INET6_ADDRSTRLEN];                       \
306        if (__sa) {                                             \
307          int __rc = getnameinfo(__sa,                          \
308                        sSAlen(__sa),                           \
309                        __addrbuf,                              \
310                        sizeof(__addrbuf),                      \
311                        NULL,                                   \
312                        0,                                      \
313                        flag);                                  \
314          if (__rc)                                             \
315                fd_log_debug("%s", (char *)gai_strerror(__rc)); \
316          else                                                  \
317                fd_log_debug("%s", &__addrbuf[0]);              \
318        } else {                                                \
319                fd_log_debug("(NULL / ANY)");                   \
320        }                                                       \
321}
322/* Same but with the port (service) also */
323#define sSA_DUMP_NODE_SERV( sa, flag ) {                                \
324        sSA * __sa = (sSA *)(sa);                                       \
325        char __addrbuf[INET6_ADDRSTRLEN];                               \
326        char __servbuf[32];                                             \
327        if (__sa) {                                                     \
328          int __rc = getnameinfo(__sa,                                  \
329                        sSAlen(__sa),                                   \
330                        __addrbuf,                                      \
331                        sizeof(__addrbuf),                              \
332                        __servbuf,                                      \
333                        sizeof(__servbuf),                              \
334                        flag);                                          \
335          if (__rc)                                                     \
336                fd_log_debug("%s", (char *)gai_strerror(__rc));         \
337          else                                                          \
338                fd_log_debug("[%s]:%s", &__addrbuf[0],&__servbuf[0]);   \
339        } else {                                                        \
340                fd_log_debug("(NULL / ANY)");                           \
341        }                                                               \
342}
343
344/* Inside a debug trace */
345#define TRACE_DEBUG_sSA(level, prefix, sa, flags, suffix ) {                                                                            \
346        if ( TRACE_BOOL(level) ) {                                                                                              \
347                char __buf[25];                                                                                                 \
348                char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                       \
349                fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
350                          "\t%s|%*s" prefix ,                                                                                   \
351                                        __thn, fd_log_time(NULL, __buf, sizeof(__buf)), __PRETTY_FUNCTION__, __FILE__, __LINE__,\
352                                        (level < FULL)?"@":" ",level, "");                                                      \
353                sSA_DUMP_NODE_SERV( sa, flags );                                                                                \
354                fd_log_debug(suffix "\n");                                                                                      \
355        }                                                                                                                       \
356}
357
358/* Report an error */
359#define TRACE_DEBUG_ERROR(format,args... ) \
360        TRACE_DEBUG(NONE, format, ##args)
361
362/******************
363 Optimized code: remove all debugging code
364 **/
365#ifdef STRIP_DEBUG_CODE
366#undef TRACE_DEBUG
367#undef TRACE_BOOL
368#undef TRACE_DEBUG_sSA
369#undef TRACE_DEBUG_BUFFER
370#undef TRACE_DEBUG_ERROR
371#define TRACE_DEBUG(level,format,args... )
372#define TRACE_BOOL(_level_) (0)
373#define TRACE_DEBUG_BUFFER(level, prefix, buf, bufsz, suffix )
374#define TRACE_DEBUG_sSA(level, prefix, sa, flags, suffix )
375#define TRACE_DEBUG_ERROR(format,args... ) {    \
376        fd_log_debug(format "\n", ## args);     \
377}
378#endif /* STRIP_DEBUG_CODE */
379
380
381/*============================================================*/
382/*                  ERROR CHECKING MACRO                      */
383/*============================================================*/
384
385/* Macros to check a return value and branch out in case of error.
386 * These macro should be used only when errors are improbable, not for expected errors.
387 */
388
389/* Check the return value of a system function and execute fallback in case of error */
390#define CHECK_SYS_DO( __call__, __fallback__  ) {                                       \
391        int __ret__;                                                                    \
392        TRACE_DEBUG_ALL( "Check SYS: " #__call__ );                                     \
393        __ret__ = (__call__);                                                           \
394        if (__ret__ < 0) {                                                              \
395                int __err__ = errno;    /* We may handle EINTR here */                  \
396                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "' :\t%s", strerror(__err__));\
397                __fallback__;                                                           \
398        }                                                                               \
399}
400/* Check the return value of a system function, return error code on error */
401#define CHECK_SYS( __call__  ) {                                                        \
402        int __ret__;                                                                    \
403        TRACE_DEBUG_ALL( "Check SYS: " #__call__ );                                     \
404        __ret__ = (__call__);                                                           \
405        if (__ret__ < 0) {                                                              \
406                int __err__ = errno;    /* We may handle EINTR here */                  \
407                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "' :\t%s", strerror(__err__));\
408                return __err__;                                                         \
409        }                                                                               \
410}
411
412/* Check the return value of a POSIX function and execute fallback in case of error or special value */
413#define CHECK_POSIX_DO2( __call__, __speval__, __fallback1__, __fallback2__ ) {                 \
414        int __ret__;                                                                            \
415        TRACE_DEBUG_ALL( "Check POSIX: " #__call__ );                                           \
416        __ret__ = (__call__);                                                                   \
417        if (__ret__ != 0) {                                                                     \
418                if (__ret__ == (__speval__)) {                                                  \
419                        __fallback1__;                                                          \
420                } else {                                                                        \
421                        TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "':\t%s", strerror(__ret__)); \
422                        __fallback2__;                                                          \
423                }                                                                               \
424        }                                                                                       \
425}
426
427/* Check the return value of a POSIX function and execute fallback in case of error */
428#define CHECK_POSIX_DO( __call__, __fallback__ )                                        \
429        CHECK_POSIX_DO2( (__call__), 0, , __fallback__ );
430
431/* Check the return value of a POSIX function and return it if error */
432#define CHECK_POSIX( __call__ ) {                                                       \
433        int __v__;                                                                      \
434        CHECK_POSIX_DO( __v__ = (__call__), return __v__ );                             \
435}
436
437/* Check that a memory allocator did not return NULL, otherwise log an error and execute fallback */
438#define CHECK_MALLOC_DO( __call__, __fallback__ ) {                                     \
439        void *  __ret__;                                                                \
440        TRACE_DEBUG_ALL( "Check MALLOC: " #__call__ );                                  \
441        __ret__ = (void *)( __call__ );                                                 \
442        if (__ret__ == NULL) {                                                          \
443                int __err__ = errno;                                                    \
444                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "':\t%s", strerror(__err__)); \
445                __fallback__;                                                           \
446        }                                                                               \
447}
448
449/* Check that a memory allocator did not return NULL, otherwise return ENOMEM */
450#define CHECK_MALLOC( __call__ )                                                        \
451        CHECK_MALLOC_DO( __call__, return ENOMEM );
452
453
454/* Check parameters at function entry, execute fallback on error */
455#define CHECK_PARAMS_DO( __bool__, __fallback__ )                                               \
456        TRACE_DEBUG_ALL( "Check PARAMS: " #__bool__ );                                          \
457        if ( ! (__bool__) ) {                                                                   \
458                TRACE_DEBUG_ERROR("Warning: Invalid parameter received in '" #__bool__ "'");    \
459                __fallback__;                                                                   \
460        }
461/* Check parameters at function entry, return EINVAL if the boolean is false (similar to assert) */
462#define CHECK_PARAMS( __bool__ )                                                        \
463        CHECK_PARAMS_DO( __bool__, return EINVAL );
464
465/* Check the return value of an internal function, log and propagate */
466#define CHECK_FCT_DO( __call__, __fallback__ ) {                                        \
467        int __ret__;                                                                    \
468        TRACE_DEBUG_ALL( "Check FCT: " #__call__ );                                     \
469        __ret__ = (__call__);                                                           \
470        if (__ret__ != 0) {                                                             \
471                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "':\t%s", strerror(__ret__)); \
472                __fallback__;                                                           \
473        }                                                                               \
474}
475/* Check the return value of a function call, return any error code */
476#define CHECK_FCT( __call__ ) {                                                         \
477        int __v__;                                                                      \
478        CHECK_FCT_DO( __v__ = (__call__), return __v__ );                               \
479}
480
481
482
483/*============================================================*/
484/*                  OTHER MACROS                              */
485/*============================================================*/
486
487
488/* helper macros (pre-processor hacks to allow macro arguments) */
489#define __tostr( arg )  #arg
490#define _stringize( arg ) __tostr( arg )
491#define __agr( arg1, arg2 ) arg1 ## arg2
492#define _aggregate( arg1, arg2 ) __agr( arg1, arg2 )
493
494
495/* A l4 protocol name (TCP / SCTP) */
496#ifdef DISABLE_SCTP
497#define IPPROTO_NAME( _proto )                                  \
498        (((_proto) == IPPROTO_TCP) ? "TCP" :                    \
499                        "Unknown")
500#else /* DISABLE_SCTP */
501#define IPPROTO_NAME( _proto )                                  \
502        ( ((_proto) == IPPROTO_TCP) ? "TCP" :                   \
503                (((_proto) == IPPROTO_SCTP) ? "SCTP" :          \
504                        "Unknown"))
505#endif /* DISABLE_SCTP */
506
507/* Define the value of IP loopback address */
508#ifndef INADDR_LOOPBACK
509#define INADDR_LOOPBACK inet_addr("127.0.0.1")
510#endif /* INADDR_LOOPBACK */
511
512#ifndef INADDR_BROADCAST
513#define INADDR_BROADCAST        ((in_addr_t) 0xffffffff)
514#endif /* INADDR_BROADCAST */
515
516/* An IP equivalent to IN6_IS_ADDR_LOOPBACK */
517#ifndef IN_IS_ADDR_LOOPBACK
518#define IN_IS_ADDR_LOOPBACK(a) \
519  ((((long int) (a)->s_addr) & ntohl(0xff000000)) == ntohl(0x7f000000))
520#endif /* IN_IS_ADDR_LOOPBACK */
521
522/* An IP equivalent to IN6_IS_ADDR_UNSPECIFIED */
523#ifndef IN_IS_ADDR_UNSPECIFIED
524#define IN_IS_ADDR_UNSPECIFIED(a) \
525  (((long int) (a)->s_addr) == 0x00000000)
526#endif /* IN_IS_ADDR_UNSPECIFIED */
527
528/* create a V4MAPPED address */
529#define IN6_ADDR_V4MAP( a6, a4 ) {                      \
530        ((uint32_t *)(a6))[0] = 0;                      \
531        ((uint32_t *)(a6))[1] = 0;                      \
532        ((uint32_t *)(a6))[2] = htonl(0xffff);          \
533        ((uint32_t *)(a6))[3] = (uint32_t)(a4);         \
534}
535
536/* Retrieve a v4 value from V4MAPPED address ( takes a s6_addr as param) */
537#define IN6_ADDR_V4UNMAP( a6 )                          \
538        (((in_addr_t *)(a6))[3])
539
540
541/* We provide macros to convert 64 bit values to and from network byte-order, on systems where it is not already provided. */
542#ifndef HAVE_NTOHLL     /* Defined by the cmake step, if the ntohll symbol is defined on the system */
543# if HOST_BIG_ENDIAN
544    /* In big-endian systems, we don't have to change the values, since the order is the same as network */
545#   define ntohll(x) (x)
546#   define htonll(x) (x)
547# else /* HOST_BIG_ENDIAN */
548    /* For these systems, we must reverse the bytes. Use ntohl and htonl on sub-32 blocs, and inverse these blocs. */
549#   define ntohll(x) (typeof (x))( (((uint64_t)ntohl( (uint32_t)(x))) << 32 ) | ((uint64_t) ntohl( ((uint64_t)(x)) >> 32 )))
550#   define htonll(x) (typeof (x))( (((uint64_t)htonl( (uint32_t)(x))) << 32 ) | ((uint64_t) htonl( ((uint64_t)(x)) >> 32 )))
551# endif /* HOST_BIG_ENDIAN */
552#endif /* HAVE_NTOHLL */
553
554/* This macro will give the next multiple of 4 for an integer (used for padding sizes of AVP). */
555#define PAD4(_x) ((_x) + ( (4 - (_x)) & 3 ) )
556
557/* Useful to display any value as (safe) ASCII (will garbage UTF-8 output...) */
558#define ASCII(_c) ( ((_c < 32) || (_c > 127)) ? ( _c ? '?' : ' ' ) : _c )
559
560/* Compare timespec structures */
561#define TS_IS_INFERIOR( ts1, ts2 )              \
562        (    ((ts1)->tv_sec  < (ts2)->tv_sec )  \
563          || (((ts1)->tv_sec  == (ts2)->tv_sec ) && ((ts1)->tv_nsec < (ts2)->tv_nsec) ))
564
565/* This gives a good size for buffered reads */
566#ifndef BUFSIZ
567#define BUFSIZ 96
568#endif /* BUFSIZ */
569
570/* This gives the length of a const string */
571#define CONSTSTRLEN( str ) (sizeof(str) - 1)
572
573
574/*============================================================*/
575/*                         BINARY STRINGS                     */
576/*============================================================*/
577
578/* Compute a hash value of a binary string.
579The hash must remain local to this machine, there is no guarantee that same input
580will give same output on a different system (endianness) */
581uint32_t fd_os_hash ( uint8_t * string, size_t len );
582
583/* This type used for binary strings that contain no \0 except as their last character.
584It means some string operations can be used on it. */
585typedef uint8_t * os0_t;
586
587/* Same as strdup but for os0_t strings */
588os0_t os0dup_int(os0_t s, size_t l);
589#define os0dup( _s, _l)  (void *)os0dup_int((os0_t)(_s), _l)
590
591/* Check that an octet string value can be used as os0_t */
592static __inline__ int fd_os_is_valid_os0(uint8_t * os, size_t oslen) {
593        /* The only situation where it is not valid is when it contains a \0 inside the octet string */
594        return (memchr(os, '\0', oslen) == NULL);
595}
596
597/* The following type denotes a verified DiameterIdentity value (that contains only pure letters, digits, hyphen, dot) */
598typedef char * DiamId_t;
599
600/* Maximum length of a hostname we accept */
601#ifndef HOST_NAME_MAX
602#define HOST_NAME_MAX 512
603#endif /* HOST_NAME_MAX */
604
605/* Check if a binary string contains a valid Diameter Identity value.
606  rfc3588 states explicitely that such a Diameter Identity consists only of ASCII characters. */
607int fd_os_is_valid_DiameterIdentity(uint8_t * os, size_t ossz);
608
609/* This checks a string is a valid DiameterIdentity and applies IDNA transformations otherwise (xn--...) */
610int fd_os_validate_DiameterIdentity(char ** id, size_t * outsz, int memory /* 0: *id can be realloc'd. 1: *id must be malloc'd on output (was static) */ );
611
612/* Create an order relationship for binary strings (not needed to be \0 terminated).
613   It does NOT mimic strings relationships so that it is more efficient. It is case sensitive.
614   (the strings are actually first ordered by their lengh, then by their bytes contents)
615   returns: -1 if os1 < os2;  +1 if os1 > os2;  0 if they are equal */
616int fd_os_cmp_int(os0_t os1, size_t os1sz, os0_t os2, size_t os2sz);
617#define fd_os_cmp(_o1, _l1, _o2, _l2)  fd_os_cmp_int((os0_t)(_o1), _l1, (os0_t)(_o2), _l2)
618
619/* A roughly case-insensitive variant, which actually only compares ASCII chars (0-127) in a case-insentitive maneer
620  -- this should be OK with (old) DNS names. Not sure how it works with IDN...
621  -- it also clearly does not support locales where a lowercase letter uses more space than upper case, such as ß -> ss
622 It is slower than fd_os_cmp...
623 This function should give the same order as fd_os_cmp, except when it finds 2 strings to be equal.
624 Note that the result is NOT the same as strcasecmp !!!
625 */
626int fd_os_almostcasecmp_int(uint8_t * os1, size_t os1sz, uint8_t * os2, size_t os2sz);
627#define fd_os_almostcasecmp(_o1, _l1, _o2, _l2)  fd_os_almostcasecmp_int((os0_t)(_o1), _l1, (os0_t)(_o2), _l2)
628
629
630/*============================================================*/
631/*                          THREADS                           */
632/*============================================================*/
633
634/* Terminate a thread */
635static __inline__ int fd_thr_term(pthread_t * th)
636{
637        void * th_ret = NULL;
638       
639        CHECK_PARAMS(th);
640       
641        /* Test if it was already terminated */
642        if (*th == (pthread_t)NULL)
643                return 0;
644       
645        /* Cancel the thread if it is still running - ignore error if it was already terminated */
646        (void) pthread_cancel(*th);
647       
648        /* Then join the thread */
649        CHECK_POSIX( pthread_join(*th, &th_ret) );
650       
651        if (th_ret == PTHREAD_CANCELED) {
652                TRACE_DEBUG(ANNOYING, "The thread %p was canceled", *th);
653        } else {
654                TRACE_DEBUG(CALL, "The thread %p returned %x", *th, th_ret);
655        }
656       
657        /* Clean the location */
658        *th = (pthread_t)NULL;
659       
660        return 0;
661}
662
663
664/*************
665 Cancelation cleanup handlers for common objects
666 *************/
667static __inline__ void fd_cleanup_mutex( void * mutex )
668{
669        CHECK_POSIX_DO( pthread_mutex_unlock((pthread_mutex_t *)mutex), /* */);
670}
671               
672static __inline__ void fd_cleanup_rwlock( void * rwlock )
673{
674        CHECK_POSIX_DO( pthread_rwlock_unlock((pthread_rwlock_t *)rwlock), /* */);
675}
676
677static __inline__ void fd_cleanup_buffer( void * buffer )
678{
679        free(buffer);
680}
681static __inline__ void fd_cleanup_socket(void * sockptr)
682{
683        if (sockptr && (*(int *)sockptr > 0)) {
684                CHECK_SYS_DO( close(*(int *)sockptr), /* ignore */ );
685                *(int *)sockptr = -1;
686        }
687}
688
689
690/*============================================================*/
691/*                          LISTS                             */
692/*============================================================*/
693
694/* The following structure represents a chained list element  */
695struct fd_list {
696        struct fd_list  *next; /* next element in the list */
697        struct fd_list  *prev; /* previous element in the list */
698        struct fd_list  *head; /* head of the list */
699        void            *o;    /* additional pointer, used for any purpose (ex: start of the parent object) */
700};
701
702/* Initialize a list element */
703#define FD_LIST_INITIALIZER( _list_name ) \
704        { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = NULL }
705#define FD_LIST_INITIALIZER_O( _list_name, _obj ) \
706        { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = _obj }
707void fd_list_init ( struct fd_list * list, void * obj );
708
709/* Return boolean, true if the list is empty */
710#define FD_IS_LIST_EMPTY( _list ) ((((struct fd_list *)(_list))->head == (_list)) && (((struct fd_list *)(_list))->next == (_list)))
711
712/* Insert an item in a list at known position */
713void fd_list_insert_after  ( struct fd_list * ref, struct fd_list * item );
714void fd_list_insert_before ( struct fd_list * ref, struct fd_list * item );
715
716/* Move all elements from a list at the end of another */
717void fd_list_move_end(struct fd_list * ref, struct fd_list * senti);
718
719/* Insert an item in an ordered list -- ordering function must be provided. If duplicate object found, EEXIST and it is returned in ref_duplicate */
720int fd_list_insert_ordered( struct fd_list * head, struct fd_list * item, int (*cmp_fct)(void *, void *), void ** ref_duplicate);
721
722/* Unlink an item from a list */
723void fd_list_unlink ( struct fd_list * item );
724
725
726
727
728/*============================================================*/
729/*                        DICTIONARY                          */
730/*============================================================*/
731
732/* Structure that contains the complete dictionary definitions */
733struct dictionary;
734
735/* Structure that contains a dictionary object */
736struct dict_object;
737
738/* Types of object in the dictionary. */
739enum dict_object_type {
740        DICT_VENDOR     = 1,    /* Vendor */
741        DICT_APPLICATION,       /* Diameter Application */
742        DICT_TYPE,              /* AVP data type */
743        DICT_ENUMVAL,           /* Named constant (value of an enumerated AVP type) */
744        DICT_AVP,               /* AVP */
745        DICT_COMMAND,           /* Diameter Command */
746        DICT_RULE               /* a Rule for AVP in command or grouped AVP */
747#define DICT_TYPE_MAX   DICT_RULE
748};
749       
750/* Initialize a dictionary */
751int fd_dict_init(struct dictionary ** dict);
752/* Destroy a dictionary */
753int fd_dict_fini(struct dictionary ** dict);
754
755/*
756 * FUNCTION:    fd_dict_new
757 *
758 * PARAMETERS:
759 *  dict        : Pointer to the dictionnary where the object is created
760 *  type        : What kind of object must be created
761 *  data        : pointer to the data for the object.
762 *               type parameter is used to determine the type of data (see bellow for detail).
763 *  parent      : a reference to a parent object, if needed.
764 *  ref         : upon successful creation, reference to new object is stored here if !null.
765 *
766 * DESCRIPTION:
767 *  Create a new object in the dictionary.
768 *  See following object sections in this header file for more information on data and parent parameters format.
769 *
770 * RETURN VALUE:
771 *  0           : The object is created in the dictionary.
772 *  EINVAL      : A parameter is invalid.
773 *  EEXIST      : This object is already defined in the dictionary (with conflicting data).
774 *                If "ref" is not NULL, it points to the existing element on return.
775 *  (other standard errors may be returned, too, with their standard meaning. Example:
776 *    ENOMEM    : Memory allocation for the new object element failed.)
777 */
778int fd_dict_new ( struct dictionary * dict, enum dict_object_type type, void * data, struct dict_object * parent, struct dict_object ** ref );
779
780/*
781 * FUNCTION:    fd_dict_search
782 *
783 * PARAMETERS:
784 *  dict        : Pointer to the dictionnary where the object is searched
785 *  type        : type of object that is being searched
786 *  criteria    : how the object must be searched. See object-related sections bellow for more information.
787 *  what        : depending on criteria, the data that must be searched.
788 *  result      : On successful return, pointer to the object is stored here.
789 *  retval      : this value is returned if the object is not found and result is not NULL.
790 *
791 * DESCRIPTION:
792 *   Perform a search in the dictionary.
793 *   See the object-specific sections bellow to find how to look for each objects.
794 *   If the "result" parameter is NULL, the function is used to check if an object is in the dictionary.
795 *   Otherwise, a reference to the object is stored in result if found.
796 *   If result is not NULL and the object is not found, retval is returned (should be 0 or ENOENT usually)
797 *
798 * RETURN VALUE:
799 *  0           : The object has been found in the dictionary, or *result is NULL.
800 *  EINVAL      : A parameter is invalid.
801 *  ENOENT      : No matching object has been found, and result was NULL.
802 */
803int fd_dict_search ( struct dictionary * dict, enum dict_object_type type, int criteria, void * what, struct dict_object ** result, int retval );
804
805/* Special case: get the generic error command object */
806int fd_dict_get_error_cmd(struct dictionary * dict, struct dict_object ** obj);
807
808/*
809 * FUNCTION:    fd_dict_getval
810 *
811 * PARAMETERS:
812 *  object      : Pointer to a dictionary object.
813 *  data        : pointer to a structure to hold the data for the object.
814 *                The type is the same as "data" parameter in fd_dict_new function.
815 *
816 * DESCRIPTION:
817 *  Retrieve content of a dictionary object.
818 *  See following object sections in this header file for more information on data and parent parameters format.
819 *
820 * RETURN VALUE:
821 *  0           : The content of the object has been retrieved.
822 *  EINVAL      : A parameter is invalid.
823 */
824int fd_dict_getval ( struct dict_object * object, void * val);
825int fd_dict_gettype ( struct dict_object * object, enum dict_object_type * type);
826int fd_dict_getdict ( struct dict_object * object, struct dictionary ** dict);
827
828/* Debug functions */
829void fd_dict_dump_object(struct dict_object * obj);
830void fd_dict_dump(struct dictionary * dict);
831
832/*
833 ***************************************************************************
834 *
835 * Vendor object
836 *
837 * These types are used to manage vendors in the dictionary
838 *
839 ***************************************************************************
840 */
841
842/* Type to hold a Vendor ID: "SMI Network Management Private Enterprise Codes" (RFC3232) */
843typedef uint32_t        vendor_id_t;
844
845/* Type to hold data associated to a vendor */
846struct dict_vendor_data {
847        vendor_id_t      vendor_id;     /* ID of a vendor */
848        char *           vendor_name;   /* The name of this vendor */
849};
850
851/* The criteria for searching a vendor object in the dictionary */
852enum {
853        VENDOR_BY_ID = 10,      /* "what" points to a vendor_id_t */
854        VENDOR_BY_NAME,         /* "what" points to a char * */
855        VENDOR_OF_APPLICATION   /* "what" points to a struct dict_object containing an application (see bellow) */
856};
857
858/***
859 *  API usage :
860
861Note: the value of "vendor_name" is copied when the object is created, and the string may be disposed afterwards.
862On the other side, when value is retrieved with dict_getval, the string is not copied and MUST NOT be freed. It will
863be freed automatically along with the object itself with call to dict_fini later.
864 
865- fd_dict_new:
866 The "parent" parameter is not used for vendors.
867 Sample code to create a vendor:
868 {
869         int ret;
870         struct dict_object * myvendor;
871         struct dict_vendor_data myvendordata = { 23455, "my vendor name" };  -- just an example...
872         ret = fd_dict_new ( dict, DICT_VENDOR, &myvendordata, NULL, &myvendor );
873 }
874
875- fd_dict_search:
876 Sample codes to look for a vendor object, by its id or name:
877 {
878         int ret;
879         struct dict_object * vendor_found;
880         vendor_id_t vendorid = 23455;
881         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_ID, &vendorid, &vendor_found, ENOENT);
882         - or -
883         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &vendor_found, ENOENT);
884 }
885 
886 - fd_dict_getval:
887 Sample code to retrieve the data from a vendor object:
888 {
889         int ret;
890         struct dict_object * myvendor;
891         struct dict_vendor_data myvendordata;
892         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &myvendor, ENOENT);
893         ret = fd_dict_getval ( myvendor, &myvendordata );
894         printf("my vendor id: %d\n", myvendordata.vendor_id );
895 }
896                 
897*/
898               
899/* Special function: */
900uint32_t * fd_dict_get_vendorid_list(struct dictionary * dict);
901         
902/*
903 ***************************************************************************
904 *
905 * Application object
906 *
907 * These types are used to manage Diameter applications in the dictionary
908 *
909 ***************************************************************************
910 */
911
912/* Type to hold a Diameter application ID: IANA assigned value for this application. */
913typedef uint32_t        application_id_t;
914
915/* Type to hold data associated to an application */
916struct dict_application_data {
917        application_id_t         application_id;        /* ID of the application */
918        char *                   application_name;      /* The name of this application */
919};
920
921/* The criteria for searching an application object in the dictionary */
922enum {
923        APPLICATION_BY_ID = 20,         /* "what" points to a application_id_t */
924        APPLICATION_BY_NAME,            /* "what" points to a char * */
925        APPLICATION_OF_TYPE,            /* "what" points to a struct dict_object containing a type object (see bellow) */
926        APPLICATION_OF_COMMAND          /* "what" points to a struct dict_object containing a command (see bellow) */
927};
928
929/***
930 *  API usage :
931
932The "parent" parameter of dict_new may point to a vendor object to inform of what vendor defines the application.
933for standard-track applications, the "parent" parameter should be NULL.
934The vendor associated to an application is retrieved with VENDOR_OF_APPLICATION search criteria on vendors.
935
936- fd_dict_new:
937 Sample code for application creation:
938 {
939         int ret;
940         struct dict_object * vendor;
941         struct dict_object * appl;
942         struct dict_vendor_data vendor_data = {
943                 23455,
944                 "my vendor name"
945         };
946         struct dict_application_data app_data = {
947                 9789,
948                 "my vendor's application"
949         };
950       
951         ret = fd_dict_new ( dict, DICT_VENDOR, &vendor_data, NULL, &vendor );
952         ret = fd_dict_new ( dict, DICT_APPLICATION, &app_data, vendor, &appl );
953 }
954
955- fd_dict_search:
956 Sample code to retrieve the vendor of an application
957 {
958         int ret;
959         struct dict_object * vendor, * appli;
960         
961         ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
962         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_OF_APPLICATION, appli, &vendor, ENOENT);
963 }
964 
965 - fd_dict_getval:
966 Sample code to retrieve the data from an application object:
967 {
968         int ret;
969         struct dict_object * appli;
970         struct dict_application_data appl_data;
971         ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
972         ret = fd_dict_getval ( appli, &appl_data );
973         printf("my application id: %s\n", appl_data.application_id );
974 }
975
976*/
977
978/*
979 ***************************************************************************
980 *
981 * Type object
982 *
983 * These types are used to manage AVP data types in the dictionary
984 *
985 ***************************************************************************
986 */
987
988/* Type to store any AVP value */ 
989union avp_value {
990        struct {
991                uint8_t *data;  /* bytes buffer */
992                size_t   len;   /* length of the data buffer */
993        }           os;         /* Storage for an octet string */
994        int32_t     i32;        /* integer 32 */
995        int64_t     i64;        /* integer 64 */
996        uint32_t    u32;        /* unsigned 32 */
997        uint64_t    u64;        /* unsigned 64 */
998        float       f32;        /* float 32 */
999        double      f64;        /* float 64 */
1000};
1001
1002/* These are the basic AVP types defined in RFC3588bis */
1003enum dict_avp_basetype {
1004        AVP_TYPE_GROUPED,
1005        AVP_TYPE_OCTETSTRING,
1006        AVP_TYPE_INTEGER32,
1007        AVP_TYPE_INTEGER64,
1008        AVP_TYPE_UNSIGNED32,
1009        AVP_TYPE_UNSIGNED64,
1010        AVP_TYPE_FLOAT32,
1011        AVP_TYPE_FLOAT64
1012#define AVP_TYPE_MAX AVP_TYPE_FLOAT64
1013};
1014
1015/* Callbacks that can be associated with a derived type to easily interpret the AVP value. */
1016/*
1017 * CALLBACK:    dict_avpdata_interpret
1018 *
1019 * PARAMETERS:
1020 *   val         : Pointer to the AVP value that must be interpreted.
1021 *   interpreted : The result of interpretation is stored here. The format and meaning depends on each type.
1022 *
1023 * DESCRIPTION:
1024 *   This callback can be provided with a derived type in order to facilitate the interpretation of formated data.
1025 *  For example, when an AVP of type "Address" is received, it can be used to convert the octetstring into a struct sockaddr.
1026 *  This callback is not called directly, but through the message's API msg_avp_value_interpret function.
1027 *
1028 * RETURN VALUE:
1029 *  0           : Operation complete.
1030 *  !0          : An error occurred, the error code is returned.
1031 */
1032typedef int (*dict_avpdata_interpret) (union avp_value * value, void * interpreted);
1033/*
1034 * CALLBACK:    dict_avpdata_encode
1035 *
1036 * PARAMETERS:
1037 *   data       : The formated data that must be stored in the AVP value.
1038 *   val        : Pointer to the AVP value storage area where the data must be stored.
1039 *
1040 * DESCRIPTION:
1041 *   This callback can be provided with a derived type in order to facilitate the encoding of formated data.
1042 *  For example, it can be used to convert a struct sockaddr in an AVP value of type Address.
1043 *  This callback is not called directly, but through the message's API msg_avp_value_encode function.
1044 *  If the callback is defined for an OctetString based type, the created string must be malloc'd. free will be called
1045 *  automatically later.
1046 *
1047 * RETURN VALUE:
1048 *  0           : Operation complete.
1049 *  !0          : An error occurred, the error code is returned.
1050 */
1051typedef int (*dict_avpdata_encode) (void * data, union avp_value * val);
1052
1053
1054/* Type to hold data associated to a derived AVP data type */
1055struct dict_type_data {
1056        enum dict_avp_basetype   type_base;     /* How the data of such AVP must be interpreted */
1057        char *                   type_name;     /* The name of this type */
1058        dict_avpdata_interpret   type_interpret;/* cb to convert the AVP value in more comprehensive format (or NULL) */
1059        dict_avpdata_encode      type_encode;   /* cb to convert formatted data into an AVP value (or NULL) */
1060        void                    (*type_dump)(union avp_value * val, FILE * fstr);       /* cb called by fd_msg_dump_one for this type of data (if != NULL), to dump the AVP value in fstr */
1061};
1062
1063/* The criteria for searching a type object in the dictionary */
1064enum {
1065        TYPE_BY_NAME = 30,              /* "what" points to a char * */
1066        TYPE_OF_ENUMVAL,                /* "what" points to a struct dict_object containing an enumerated constant (DICT_ENUMVAL, see bellow). */
1067        TYPE_OF_AVP                     /* "what" points to a struct dict_object containing an AVP object. */
1068};
1069
1070
1071/***
1072 *  API usage :
1073
1074- fd_dict_new:
1075 The "parent" parameter may point to an application object, when a type is defined by a Diameter application.
1076 
1077 Sample code:
1078 {
1079         int ret;
1080         struct dict_object * mytype;
1081         struct dict_type_data mytypedata =
1082                {
1083                 AVP_TYPE_OCTETSTRING,
1084                 "Address",
1085                 NULL,
1086                 NULL
1087                };
1088         ret = fd_dict_new ( dict, DICT_TYPE, &mytypedata, NULL, &mytype );
1089 }
1090
1091- fd_dict_search:
1092 Sample code:
1093 {
1094         int ret;
1095         struct dict_object * address_type;
1096         ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Address", &address_type, ENOENT);
1097 }
1098 
1099*/
1100         
1101/*
1102 ***************************************************************************
1103 *
1104 * Enumerated values object
1105 *
1106 * These types are used to manage named constants of some AVP,
1107 * for enumerated types. freeDiameter allows constants for types others than Unsigned32
1108 *
1109 ***************************************************************************
1110 */
1111
1112/* Type to hold data of named constants for AVP */
1113struct dict_enumval_data {
1114        char *           enum_name;     /* The name of this constant */
1115        union avp_value  enum_value;    /* Value of the constant. Union term depends on parent type's base type. */
1116};
1117
1118/* The criteria for searching a constant in the dictionary */
1119enum {
1120        ENUMVAL_BY_STRUCT = 40, /* "what" points to a struct dict_enumval_request as defined bellow */
1121};
1122
1123struct dict_enumval_request {
1124        /* Identifier of the parent type, one of the following must not be NULL */
1125        struct dict_object      *type_obj;
1126        char *                   type_name;
1127       
1128        /* Search criteria for the constant */
1129        struct dict_enumval_data search; /* search.enum_value is used only if search.enum_name == NULL */
1130};
1131
1132/***
1133 *  API usage :
1134
1135- fd_dict_new:
1136 The "parent" parameter must point to a derived type object.
1137 Sample code to create a type "Boolean" with two constants "True" and "False":
1138 {
1139         int ret;
1140         struct dict_object * type_boolean;
1141         struct dict_type_data type_boolean_data =
1142                {
1143                 AVP_TYPE_INTEGER32,
1144                 "Boolean",
1145                 NULL,
1146                 NULL
1147                };
1148         struct dict_enumval_data boolean_false =
1149                {
1150                 .enum_name="False",
1151                 .enum_value.i32 = 0
1152                };
1153         struct dict_enumval_data boolean_true =
1154                {
1155                 .enum_name="True",
1156                 .enum_value.i32 = -1
1157                };
1158         ret = fd_dict_new ( dict, DICT_TYPE, &type_boolean_data, NULL, &type_boolean );
1159         ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_false, type_boolean, NULL );
1160         ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_true , type_boolean, NULL );
1161         
1162 }
1163
1164- fd_dict_search:
1165 Sample code to look for a constant name, by its value:
1166 {
1167         int ret;
1168         struct dict_object * value_found;
1169         struct dict_enumval_request boolean_by_value =
1170                {
1171                 .type_name = "Boolean",
1172                 .search.enum_name=NULL,
1173                 .search.enum_value.i32 = -1
1174                };
1175         
1176         ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1177 }
1178 
1179 - fd_dict_getval:
1180 Sample code to retrieve the data from a constant object:
1181 {
1182         int ret;
1183         struct dict_object * value_found;
1184         struct dict_enumval_data boolean_data = NULL;
1185         struct dict_enumval_request boolean_by_value =
1186                {
1187                 .type_name = "Boolean",
1188                 .search.enum_name=NULL,
1189                 .search.enum_value.i32 = 0
1190                };
1191         
1192         ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1193         ret = fd_dict_getval ( value_found, &boolean_data );
1194         printf(" Boolean with value 0: %s", boolean_data.enum_name );
1195 }
1196*/
1197         
1198/*
1199 ***************************************************************************
1200 *
1201 * AVP object
1202 *
1203 * These objects are used to manage AVP definitions in the dictionary
1204 *
1205 ***************************************************************************
1206 */
1207
1208/* Type to hold an AVP code. For vendor 0, these codes are assigned by IANA. Otherwise, it is managed by the vendor */
1209typedef uint32_t        avp_code_t;
1210
1211/* Values of AVP flags */
1212#define AVP_FLAG_VENDOR         0x80
1213#define AVP_FLAG_MANDATORY      0x40
1214#define AVP_FLAG_RESERVED3      0x20
1215#define AVP_FLAG_RESERVED4      0x10
1216#define AVP_FLAG_RESERVED5      0x08
1217#define AVP_FLAG_RESERVED6      0x04
1218#define AVP_FLAG_RESERVED7      0x02
1219#define AVP_FLAG_RESERVED8      0x01
1220
1221/* For dumping flags and values */
1222#define DUMP_AVPFL_str  "%c%c"
1223#define DUMP_AVPFL_val(_val) (_val & AVP_FLAG_VENDOR)?'V':'-' , (_val & AVP_FLAG_MANDATORY)?'M':'-'
1224
1225/* Type to hold data associated to an avp */
1226struct dict_avp_data {
1227        avp_code_t               avp_code;      /* Code of the avp */
1228        vendor_id_t              avp_vendor;    /* Vendor of the AVP, or 0 */
1229        char *                   avp_name;      /* Name of this AVP */
1230        uint8_t                  avp_flag_mask; /* Mask of fixed AVP flags */
1231        uint8_t                  avp_flag_val;  /* Values of the fixed flags */
1232        enum dict_avp_basetype   avp_basetype;  /* Basic type of data found in the AVP */
1233};
1234
1235/* The criteria for searching an avp object in the dictionary */
1236enum {
1237        AVP_BY_CODE = 50,       /* "what" points to an avp_code_t, vendor is always 0 */
1238        AVP_BY_NAME,            /* "what" points to a char *, vendor is always 0 */
1239        AVP_BY_CODE_AND_VENDOR, /* "what" points to a struct dict_avp_request (see bellow), where avp_vendor and avp_code are set */
1240        AVP_BY_NAME_AND_VENDOR, /* "what" points to a struct dict_avp_request (see bellow), where avp_vendor and avp_name are set */
1241        AVP_BY_NAME_ALL_VENDORS /* "what" points to a string. Might be quite slow... */
1242};
1243
1244/* Struct used for some researchs */
1245struct dict_avp_request {
1246        vendor_id_t      avp_vendor;
1247        avp_code_t       avp_code;
1248        char *           avp_name;
1249};
1250
1251
1252/***
1253 *  API usage :
1254
1255If "parent" parameter is not NULL during AVP creation, it must point to a DICT_TYPE object.
1256The extended type is then attached to the AVP. In case where it is an enumerated type, the value of
1257AVP is automatically interpreted in debug messages, and in message checks.
1258The derived type of an AVP can be retrieved with: dict_search ( DICT_TYPE, TYPE_OF_AVP, avp, ... )
1259
1260To create the rules (ABNF) for children of Grouped AVP, see the DICT_RULE related part.
1261
1262- fd_dict_new:
1263 Sample code for AVP creation:
1264 {
1265         int ret;
1266         struct dict_object * user_name_avp;
1267         struct dict_object * boolean_type;
1268         struct dict_object * sample_boolean_avp;
1269         struct dict_avp_data user_name_data = {
1270                 1,                                     // code
1271                 0,                                     // vendor
1272                 "User-Name",                           // name
1273                 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY,  // fixed mask: V and M values must always be defined as follow. other flags can be set or cleared
1274                 AVP_FLAG_MANDATORY,                    // the V flag must be cleared, the M flag must be set.
1275                 AVP_TYPE_OCTETSTRING                   // User-Name AVP contains OctetString data (further precision such as UTF8String can be given with a parent derived type)
1276         };
1277         struct dict_avp_data sample_boolean_data = {
1278                 31337,
1279                 23455,
1280                 "Sample-Boolean",
1281                 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY,
1282                 AVP_FLAG_VENDOR,
1283                 AVP_TYPE_INTEGER32                     // This MUST be the same as parent type's
1284         };
1285       
1286         -- Create an AVP with a base type --
1287         ret = fd_dict_new ( dict, DICT_AVP, &user_name_data, NULL, &user_name_avp );
1288         
1289         -- Create an AVP with a derived type --
1290         ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Boolean", &boolean_type, ENOENT);
1291         ret = fd_dict_new ( dict, DICT_AVP, &sample_boolean_data , boolean_type, &sample_boolean_avp );
1292         
1293 }
1294
1295- fd_dict_search:
1296 Sample code to look for an AVP
1297 {
1298         int ret;
1299         struct dict_object * avp_username;
1300         struct dict_object * avp_sampleboolean;
1301         struct dict_avp_request avpvendorboolean =
1302                {
1303                 .avp_vendor = 23455,
1304                 .avp_name   = "Sample-Boolean"
1305                };
1306         
1307         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1308         
1309         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME_AND_VENDOR, &avpvendorboolean, &avp_sampleboolean, ENOENT);
1310         
1311 }
1312 
1313 - fd_dict_getval:
1314 Sample code to retrieve the data from an AVP object:
1315 {
1316         int ret;
1317         struct dict_object * avp_username;
1318         struct dict_avp_data user_name_data;
1319         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1320         ret = fd_dict_getval ( avp_username, &user_name_data );
1321         printf("User-Name code: %d\n", user_name_data.avp_code );
1322 }
1323
1324*/
1325
1326/*
1327 ***************************************************************************
1328 *
1329 * Command object
1330 *
1331 * These types are used to manage commands objects in the dictionary
1332 *
1333 ***************************************************************************
1334 */
1335
1336/* Type to hold a Diameter command code: IANA assigned values. 0x0-0x7fffff=standard, 0x800000-0xfffffd=vendors, 0xfffffe-0xffffff=experimental */
1337typedef uint32_t        command_code_t;
1338
1339/* Values of command flags */
1340#define CMD_FLAG_REQUEST        0x80
1341#define CMD_FLAG_PROXIABLE      0x40
1342#define CMD_FLAG_ERROR          0x20
1343#define CMD_FLAG_RETRANSMIT     0x10
1344#define CMD_FLAG_RESERVED5      0x08
1345#define CMD_FLAG_RESERVED6      0x04
1346#define CMD_FLAG_RESERVED7      0x02
1347#define CMD_FLAG_RESERVED8      0x01
1348
1349/* For dumping flags and values */
1350#define DUMP_CMDFL_str  "%c%c%c%c"
1351#define DUMP_CMDFL_val(_val) (_val & CMD_FLAG_REQUEST)?'R':'-' , (_val & CMD_FLAG_PROXIABLE)?'P':'-' , (_val & CMD_FLAG_ERROR)?'E':'-' , (_val & CMD_FLAG_RETRANSMIT)?'T':'-'
1352
1353/* Type to hold data associated to a command */
1354struct dict_cmd_data {
1355        command_code_t   cmd_code;      /* code of the command */
1356        char *           cmd_name;      /* Name of the command */
1357        uint8_t          cmd_flag_mask; /* Mask of fixed-value flags */
1358        uint8_t          cmd_flag_val;  /* values of the fixed flags */
1359};
1360
1361/* The criteria for searching an avp object in the dictionary */
1362enum {
1363        CMD_BY_NAME = 60,       /* "what" points to a char * */
1364        CMD_BY_CODE_R,          /* "what" points to a command_code_t. The "Request" command is returned. */
1365        CMD_BY_CODE_A,          /* "what" points to a command_code_t. The "Answer" command is returned. */
1366        CMD_ANSWER              /* "what" points to a struct dict_object of a request command. The corresponding "Answer" command is returned. */
1367};
1368
1369
1370/***
1371 *  API usage :
1372
1373The "parent" parameter of dict_new may point to an application object to inform of what application defines the command.
1374The application associated to a command is retrieved with APPLICATION_OF_COMMAND search criteria on applications.
1375
1376To create the rules for children of commands, see the DICT_RULE related part.
1377
1378Note that the "Request" and "Answer" commands are two independant objects. This allows to have different rules for each.
1379
1380- fd_dict_new:
1381 Sample code for command creation:
1382 {
1383         int ret;
1384         struct dict_object * cer;
1385         struct dict_object * cea;
1386         struct dict_cmd_data ce_data = {
1387                 257,                                   // code
1388                 "Capabilities-Exchange-Request",       // name
1389                 CMD_FLAG_REQUEST,                      // mask
1390                 CMD_FLAG_REQUEST                       // value. Only the "R" flag is constrained here, set.
1391         };
1392       
1393         ret = fd_dict_new (dict,  DICT_COMMAND, &ce_data, NULL, &cer );
1394         
1395         ce_data.cmd_name = "Capabilities-Exchange-Answer";
1396         ce_data.cmd_flag_val = 0;                      // Same constraint on "R" flag, but this time it must be cleared.
1397
1398         ret = fd_dict_new ( dict, DICT_COMMAND, &ce_data, NULL, &cea );
1399 }
1400
1401- fd_dict_search:
1402 Sample code to look for a command
1403 {
1404         int ret;
1405         struct dict_object * cer, * cea;
1406         command_code_t code = 257;
1407         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1408         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_CODE_R, &code, &cer, ENOENT);
1409 }
1410 
1411 - fd_dict_getval:
1412 Sample code to retrieve the data from a command object:
1413 {
1414         int ret;
1415         struct dict_object * cer;
1416         struct dict_object * cea;
1417         struct dict_cmd_data cea_data;
1418         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1419         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_ANSWER, cer, &cea, ENOENT);
1420         ret = fd_dict_getval ( cea, &cea_data );
1421         printf("Answer to CER: %s\n", cea_data.cmd_name );
1422 }
1423
1424*/
1425
1426/*
1427 ***************************************************************************
1428 *
1429 * Rule object
1430 *
1431 * These objects are used to manage rules in the dictionary (ABNF implementation)
1432 * This is used for checking messages validity (more powerful than a DTD)
1433 *
1434 ***************************************************************************
1435 */
1436
1437/* This defines the kind of rule that is defined */
1438enum rule_position {
1439        RULE_FIXED_HEAD = 1,    /* The AVP must be at the head of the group. The rule_order field is used to specify the position. */
1440        RULE_REQUIRED,          /* The AVP must be present in the parent, but its position is not defined. */
1441        RULE_OPTIONAL,          /* The AVP may be present in the message. Used to specify a max number of occurences for example */
1442        RULE_FIXED_TAIL         /* The AVP must be at the end of the group. The rule_order field is used to specify the position. */
1443};
1444
1445/* Content of a RULE object data */
1446struct dict_rule_data {
1447        struct dict_object      *rule_avp;      /* Pointer to the AVP object that is concerned by this rule */
1448        enum rule_position       rule_position; /* The position in which the rule_avp must appear in the parent */
1449        unsigned                 rule_order;    /* for RULE_FIXED_* rules, the place. 1,2,3.. for HEAD rules; ...,3,2,1 for TAIL rules. */
1450        int                      rule_min;      /* Minimum number of occurences. -1 means "default": 0 for optional rules, 1 for other rules */
1451        int                      rule_max;      /* Maximum number of occurences. -1 means no maximum. 0 means the AVP is forbidden. */
1452};
1453
1454/* The criteria for searching a rule in the dictionary */
1455enum {
1456        RULE_BY_AVP_AND_PARENT = 70     /* "what" points to a struct dict_rule_request -- see bellow. This is used to query "what is the rule for this AVP in this group?" */
1457};
1458
1459/* Structure for querying the dictionary about a rule */
1460struct dict_rule_request {
1461        struct dict_object      *rule_parent;   /* The grouped avp or command to which the rule apply */
1462        struct dict_object      *rule_avp;      /* The AVP concerned by this rule */
1463};
1464
1465
1466/***
1467 *  API usage :
1468
1469The "parent" parameter can not be NULL. It points to the object (grouped avp or command) to which this rule apply (i.e. for which the ABNF is defined).
1470
1471- fd_dict_new:
1472 Sample code for rule creation. Let's create the Proxy-Info grouped AVP for example.
1473 {
1474        int ret;
1475        struct dict_object * proxy_info_avp;
1476        struct dict_object * proxy_host_avp;
1477        struct dict_object * proxy_state_avp;
1478        struct dict_object * diameteridentity_type;
1479        struct dict_rule_data rule_data;
1480        struct dict_type_data di_type_data = { AVP_TYPE_OCTETSTRING, "DiameterIdentity", NULL, NULL };
1481        struct dict_avp_data proxy_info_data = { 284, 0, "Proxy-Info", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_GROUPED };
1482        struct dict_avp_data proxy_host_data = { 280, 0, "Proxy-Host", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1483        struct dict_avp_data proxy_state_data = { 33, 0, "Proxy-State",AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1484       
1485        -- Create the parent AVP
1486        ret = fd_dict_new ( dict, DICT_AVP, &proxy_info_data, NULL, &proxy_info_avp );
1487       
1488        -- Create the first child AVP.
1489        ret = fd_dict_new ( dict, DICT_TYPE, &di_type_data, NULL, &diameteridentity_type );
1490        ret = fd_dict_new ( dict, DICT_AVP, &proxy_host_data, diameteridentity_type, &proxy_host_avp );
1491       
1492        -- Create the other child AVP
1493        ret = fd_dict_new ( dict, DICT_AVP, &proxy_state_data, NULL, &proxy_state_avp );
1494       
1495        -- Now we can create the rules. Both children AVP are mandatory.
1496        rule_data.rule_position = RULE_REQUIRED;
1497        rule_data.rule_min = -1;
1498        rule_data.rule_max = -1;
1499       
1500        rule_data.rule_avp = proxy_host_avp;
1501        ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1502       
1503        rule_data.rule_avp = proxy_state_avp;
1504        ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1505}
1506
1507- fd_dict_search and fd_dict_getval are similar to previous examples.
1508
1509*/
1510               
1511/* Define some hard-coded values */
1512/* Application */
1513#define AI_RELAY                        0xffffffff
1514
1515/* Commands Codes */
1516#define CC_CAPABILITIES_EXCHANGE        257
1517#define CC_RE_AUTH                      258
1518#define CC_ACCOUNTING                   271
1519#define CC_ABORT_SESSION                274
1520#define CC_SESSION_TERMINATION          275
1521#define CC_DEVICE_WATCHDOG              280
1522#define CC_DISCONNECT_PEER              282
1523
1524/* AVPs (Vendor 0) */
1525#define AC_USER_NAME                    1
1526#define AC_PROXY_STATE                  33
1527#define AC_HOST_IP_ADDRESS              257
1528#define AC_AUTH_APPLICATION_ID          258
1529#define AC_ACCT_APPLICATION_ID          259
1530#define AC_VENDOR_SPECIFIC_APPLICATION_ID 260
1531#define AC_REDIRECT_HOST_USAGE          261
1532#define AC_REDIRECT_MAX_CACHE_TIME      262
1533#define AC_SESSION_ID                   263
1534#define AC_ORIGIN_HOST                  264
1535#define AC_SUPPORTED_VENDOR_ID          265
1536#define AC_VENDOR_ID                    266
1537#define AC_FIRMWARE_REVISION            267
1538#define AC_RESULT_CODE                  268
1539#define AC_PRODUCT_NAME                 269
1540#define AC_DISCONNECT_CAUSE             273
1541#define ACV_DC_REBOOTING                        0
1542#define ACV_DC_BUSY                             1
1543#define ACV_DC_NOT_FRIEND                       2
1544#define AC_ORIGIN_STATE_ID              278
1545#define AC_FAILED_AVP                   279
1546#define AC_PROXY_HOST                   280
1547#define AC_ERROR_MESSAGE                281
1548#define AC_ROUTE_RECORD                 282
1549#define AC_DESTINATION_REALM            283
1550#define AC_PROXY_INFO                   284
1551#define AC_REDIRECT_HOST                292
1552#define AC_DESTINATION_HOST             293
1553#define AC_ERROR_REPORTING_HOST         294
1554#define AC_ORIGIN_REALM                 296
1555#define AC_INBAND_SECURITY_ID           299
1556#define ACV_ISI_NO_INBAND_SECURITY              0
1557#define ACV_ISI_TLS                             1
1558
1559/* Error codes from Base protocol
1560(reference: http://www.iana.org/assignments/aaa-parameters/aaa-parameters.xml#aaa-parameters-4)
1561Note that currently, rfc3588bis-26 has some different values for some of these
1562*/
1563#define ER_DIAMETER_MULTI_ROUND_AUTH                    1001
1564
1565#define ER_DIAMETER_SUCCESS                             2001
1566#define ER_DIAMETER_LIMITED_SUCCESS                     2002
1567
1568#define ER_DIAMETER_COMMAND_UNSUPPORTED                 3001 /* 5019 ? */
1569#define ER_DIAMETER_UNABLE_TO_DELIVER                   3002
1570#define ER_DIAMETER_REALM_NOT_SERVED                    3003
1571#define ER_DIAMETER_TOO_BUSY                            3004
1572#define ER_DIAMETER_LOOP_DETECTED                       3005
1573#define ER_DIAMETER_REDIRECT_INDICATION                 3006
1574#define ER_DIAMETER_APPLICATION_UNSUPPORTED             3007
1575#define ER_DIAMETER_INVALID_HDR_BITS                    3008 /* 5020 ? */
1576#define ER_DIAMETER_INVALID_AVP_BITS                    3009 /* 5021 ? */
1577#define ER_DIAMETER_UNKNOWN_PEER                        3010 /* 5018 ? */
1578
1579#define ER_DIAMETER_AUTHENTICATION_REJECTED             4001
1580#define ER_DIAMETER_OUT_OF_SPACE                        4002
1581#define ER_ELECTION_LOST                                4003
1582
1583#define ER_DIAMETER_AVP_UNSUPPORTED                     5001
1584#define ER_DIAMETER_UNKNOWN_SESSION_ID                  5002
1585#define ER_DIAMETER_AUTHORIZATION_REJECTED              5003
1586#define ER_DIAMETER_INVALID_AVP_VALUE                   5004
1587#define ER_DIAMETER_MISSING_AVP                         5005
1588#define ER_DIAMETER_RESOURCES_EXCEEDED                  5006
1589#define ER_DIAMETER_CONTRADICTING_AVPS                  5007
1590#define ER_DIAMETER_AVP_NOT_ALLOWED                     5008
1591#define ER_DIAMETER_AVP_OCCURS_TOO_MANY_TIMES           5009
1592#define ER_DIAMETER_NO_COMMON_APPLICATION               5010
1593#define ER_DIAMETER_UNSUPPORTED_VERSION                 5011
1594#define ER_DIAMETER_UNABLE_TO_COMPLY                    5012
1595#define ER_DIAMETER_INVALID_BIT_IN_HEADER               5013 /* 3011 ? */
1596#define ER_DIAMETER_INVALID_AVP_LENGTH                  5014
1597#define ER_DIAMETER_INVALID_MESSAGE_LENGTH              5015 /* 3012 ? */
1598#define ER_DIAMETER_INVALID_AVP_BIT_COMBO               5016 /* deprecated? */
1599#define ER_DIAMETER_NO_COMMON_SECURITY                  5017
1600
1601
1602/*============================================================*/
1603/*                         SESSIONS                           */
1604/*============================================================*/
1605
1606/* Modules that want to associate a state with a Session-Id must first register a handler of this type */
1607struct session_handler;
1608
1609/* This opaque structure represents a session associated with a Session-Id */
1610struct session;
1611
1612/* The state information that a module associate with a session -- each module defines its own data format */
1613typedef void session_state;
1614
1615/* The following function must be called to activate the session expiry mechanism */
1616int fd_sess_start(void);
1617
1618/*
1619 * FUNCTION:    fd_sess_handler_create
1620 *
1621 * PARAMETERS:
1622 *  handler     : location where the new handler must be stored.
1623 *  cleanup     : a callback function that must be called when the session with associated data is destroyed.
1624 *  opaque      : A pointer that is passed to the cleanup callback -- the content is never examined by the framework.
1625 *
1626 * DESCRIPTION:
1627 *  Create a new session handler. This is needed by a module to associate a state with a session object.
1628 * The cleanup handler is called when the session timeout expires, or fd_sess_destroy is called. It must free
1629 * the state associated with the session, and eventually trig other actions (send a STR, ...).
1630 *
1631 * RETURN VALUE:
1632 *  0           : The new handler has been created.
1633 *  EINVAL      : A parameter is invalid.
1634 *  ENOMEM      : Not enough memory to complete the operation
1635 */
1636int fd_sess_handler_create_internal ( struct session_handler ** handler, void (*cleanup)(session_state * state, os0_t sid, void * opaque), void * opaque );
1637/* Macro to avoid casting everywhere */
1638#define fd_sess_handler_create( _handler, _cleanup, _opaque ) \
1639        fd_sess_handler_create_internal( (_handler), (void (*)(session_state *, os0_t, void *))(_cleanup), (void *)(_opaque) )
1640
1641       
1642/*
1643 * FUNCTION:    fd_sess_handler_destroy
1644 *
1645 * PARAMETERS:
1646 *  handler     : location of an handler created by fd_sess_handler_create.
1647 *  opaque      : the opaque pointer registered with the callback is restored here (if ! NULL).
1648 *
1649 * DESCRIPTION:
1650 *  This destroys a session handler (typically called when an application is shutting down).
1651 * If sessions states are registered with this handler, the cleanup callback is called on them.
1652 *
1653 * RETURN VALUE:
1654 *  0           : The handler was destroyed.
1655 *  EINVAL      : A parameter is invalid.
1656 *  ENOMEM      : Not enough memory to complete the operation
1657 */
1658int fd_sess_handler_destroy ( struct session_handler ** handler, void **opaque );
1659
1660
1661
1662/*
1663 * FUNCTION:    fd_sess_new
1664 *
1665 * PARAMETERS:
1666 *  session       : The location where the session object will be created upon success.
1667 *  diamid        : a Diameter Identity, or NULL.
1668 *  diamidlen     : if diamid is \0-terminated, this can be 0. Otherwise, the length of diamid.
1669 *  opt           : Additional string, or NULL. Usage is described bellow.
1670 *  optlen        : if opt is \0-terminated, this can be 0. Otherwise, the length of opt.
1671 *
1672 * DESCRIPTION:
1673 *   Create a new session object. The Session-Id string associated with this session is generated as follow:
1674 *  If diamId parameter is provided, the string is created according to the RFC: <diamId>;<high32>;<low32>[;opt] where
1675 *    diamId is a Diameter Identity.
1676 *    high32 and low32 are the parts of a monotonic 64 bits counter initialized to (time, 0) at startup.
1677 *    opt is an optional string that can be concatenated to the identifier.
1678 *  If diamId is NULL, the string is exactly the content of opt.
1679 *
1680 * RETURN VALUE:
1681 *  0           : The session is created.
1682 *  EINVAL      : A parameter is invalid.
1683 *  EALREADY    : A session with the same name already exists (returned in *session)
1684 *  ENOMEM      : Not enough memory to complete the operation
1685 */
1686int fd_sess_new ( struct session ** session, DiamId_t diamid, size_t diamidlen, uint8_t * opt, size_t optlen );
1687
1688/*
1689 * FUNCTION:    fd_sess_fromsid
1690 *
1691 * PARAMETERS:
1692 *  sid         : pointer to a string containing a Session-Id (should be UTF-8).
1693 *  len         : length of the sid string (which does not need to be '\0'-terminated)
1694 *  session     : On success, pointer to the session object created / retrieved.
1695 *  isnew       : if not NULL, set to 1 on return if the session object has been created, 0 if it was simply retrieved.
1696 *
1697 * DESCRIPTION:
1698 *   Retrieve a session object from a Session-Id string. In case no session object was previously existing with this
1699 *  id, a new object is silently created (equivalent to fd_sess_new with flag SESSION_NEW_FULL).
1700 *
1701 * RETURN VALUE:
1702 *  0           : The session parameter has been updated.
1703 *  EINVAL      : A parameter is invalid.
1704 *  ENOMEM      : Not enough memory to complete the operation
1705 */
1706int fd_sess_fromsid ( uint8_t * sid, size_t len, struct session ** session, int * isnew);
1707
1708/*
1709 * FUNCTION:    fd_sess_getsid
1710 *
1711 * PARAMETERS:
1712 *  session     : Pointer to a session object.
1713 *  sid         : On success, the location of the sid is stored here.
1714 *
1715 * DESCRIPTION:
1716 *   Retrieve the session identifier (Session-Id) corresponding to a session object.
1717 *  The returned sid is a \0-terminated binary string which might be UTF-8 (but there is no guarantee in the framework).
1718 *  It may be used for example to set the value of an AVP.
1719 *  Note that the sid string is not copied, just its reference... do not free it!
1720 *
1721 * RETURN VALUE:
1722 *  0           : The sid & len parameters have been updated.
1723 *  EINVAL      : A parameter is invalid.
1724 */
1725int fd_sess_getsid ( struct session * session, os0_t * sid, size_t * sidlen );
1726
1727/*
1728 * FUNCTION:    fd_sess_settimeout
1729 *
1730 * PARAMETERS:
1731 *  session     : The session for which to set the timeout.
1732 *  timeout     : The date when the session times out.
1733 *
1734 * DESCRIPTION:
1735 *   Set the lifetime for a given session object. This function may be
1736 * called several times on the same object to update the timeout value.
1737 *   When the timeout date is reached, the cleanup handler of each
1738 * module that registered data with this session is called, then the
1739 * session is cleared.
1740 *
1741 *   There is a possible race condition between cleanup of the session
1742 * and use of its data; applications should ensure that they are not
1743 * using data from a session that is about to expire / expired.
1744 *
1745 * RETURN VALUE:
1746 *  0           : The session timeout has been updated.
1747 *  EINVAL      : A parameter is invalid.
1748 */
1749int fd_sess_settimeout( struct session * session, const struct timespec * timeout );
1750
1751/*
1752 * FUNCTION:    fd_sess_destroy
1753 *
1754 * PARAMETERS:
1755 *  session     : Pointer to a session object.
1756 *
1757 * DESCRIPTION:
1758 *   Destroys all associated states of a session, if any.
1759 * Equivalent to a session timeout expired, but the effect is immediate.
1760 * The session itself is marked as deleted, and will be freed when it is not referenced
1761 * by any message anymore.
1762 *
1763 * RETURN VALUE:
1764 *  0           : The session no longer exists.
1765 *  EINVAL      : A parameter is invalid.
1766 */
1767int fd_sess_destroy ( struct session ** session );
1768
1769/*
1770 * FUNCTION:    fd_sess_reclaim
1771 *
1772 * PARAMETERS:
1773 *  session     : Pointer to a session object.
1774 *
1775 * DESCRIPTION:
1776 *   Equivalent to fd_sess_destroy, only if no session_state is associated with the session.
1777 *  Otherwise, this function has no effect (except that it sets *session to NULL).
1778 *
1779 * RETURN VALUE:
1780 *  0           : The session was reclaimed.
1781 *  EINVAL      : A parameter is invalid.
1782 */
1783int fd_sess_reclaim ( struct session ** session );
1784
1785
1786
1787
1788/*
1789 * FUNCTION:    fd_sess_state_store
1790 *
1791 * PARAMETERS:
1792 *  handler     : The handler with which the state is registered.
1793 *  session     : The session object with which the state is registered.
1794 *  state       : An application state (opaque data) to store with the session.
1795 *
1796 * DESCRIPTION:
1797 *  Stores an application state with a session. This state can later be retrieved
1798 * with fd_sess_state_retrieve, or implicitly in the cleanup handler when the session
1799 * is destroyed.
1800 *
1801 * RETURN VALUE:
1802 *  0           : The state has been stored.
1803 *  EINVAL      : A parameter is invalid.
1804 *  EALREADY    : Data was already associated with this session and client.
1805 *  ENOMEM      : Not enough memory to complete the operation
1806 */
1807int fd_sess_state_store_internal ( struct session_handler * handler, struct session * session, session_state ** state );
1808#define fd_sess_state_store( _handler, _session, _state ) \
1809        fd_sess_state_store_internal( (_handler), (_session), (void *)(_state) )
1810
1811/*
1812 * FUNCTION:    fd_sess_state_retrieve
1813 *
1814 * PARAMETERS:
1815 *  handler     : The handler with which the state was registered.
1816 *  session     : The session object with which the state was registered.
1817 *  state       : Location where the state must be saved if it is found.
1818 *
1819 * DESCRIPTION:
1820 *  Retrieves a state saved by fd_sess_state_store.
1821 * After this function has been called, the state is no longer associated with
1822 * the session. A new call to fd_sess_state_store must be performed in order to
1823 * store again the data with the session.
1824 *
1825 * RETURN VALUE:
1826 *  0           : *state is updated (NULL or points to the state if it was found).
1827 *  EINVAL      : A parameter is invalid.
1828 */
1829int fd_sess_state_retrieve_internal ( struct session_handler * handler, struct session * session, session_state ** state ); 
1830#define fd_sess_state_retrieve( _handler, _session, _state ) \
1831        fd_sess_state_retrieve_internal( (_handler), (_session), (void *)(_state) )
1832
1833
1834/* For debug */
1835void fd_sess_dump(int level, struct session * session);
1836void fd_sess_dump_hdl(int level, struct session_handler * handler);
1837
1838/*============================================================*/
1839/*                         ROUTING                            */
1840/*============================================================*/
1841
1842/* The following functions are helpers for the routing module.
1843  The routing data is stored in the message itself. */
1844
1845/* Structure that contains the routing data for a message */
1846struct rt_data;
1847
1848/* Following functions are helpers to create the routing data of a message */
1849int  fd_rtd_init(struct rt_data ** rtd);
1850void fd_rtd_free(struct rt_data ** rtd);
1851
1852/* Add a peer to the candidates list. */
1853int  fd_rtd_candidate_add(struct rt_data * rtd, DiamId_t peerid, size_t peeridlen, DiamId_t realm, size_t realmlen);
1854
1855/* Remove a peer from the candidates (if it is found). The search is case-insensitive. */
1856void fd_rtd_candidate_del(struct rt_data * rtd, uint8_t * id, size_t idsz);
1857
1858/* Extract the list of valid candidates, and initialize their scores to 0 */
1859void fd_rtd_candidate_extract(struct rt_data * rtd, struct fd_list ** candidates, int ini_score);
1860
1861/* If a peer returned a protocol error for this message, save it so that we don't try to send it there again */
1862int  fd_rtd_error_add(struct rt_data * rtd, DiamId_t sentto, size_t senttolen, uint8_t * origin, size_t originsz, uint32_t rcode);
1863
1864/* The extracted list items have the following structure: */
1865struct rtd_candidate {
1866        struct fd_list  chain;  /* link in the list returned by the previous fct */
1867        DiamId_t        diamid; /* the diameter Id of the peer */
1868        size_t          diamidlen; /* cached size of the diamid string */
1869        DiamId_t        realm;  /* the diameter realm of the peer */
1870        size_t          realmlen; /* cached size of realm */
1871        int             score;  /* the current routing score for this peer, see fd_rt_out_register definition for details */
1872};
1873
1874/* Reorder the list of peers by score */
1875int  fd_rtd_candidate_reorder(struct fd_list * candidates);
1876
1877/* Note : it is fine for a callback to add a new entry in the candidates list after the list has been extracted. The diamid must then be malloc'd. */
1878/* Beware that this could lead to routing loops */
1879
1880/*============================================================*/
1881/*                         MESSAGES                           */
1882/*============================================================*/
1883
1884/* The following types are opaque */
1885struct  msg;    /* A message: command with children AVPs (possibly grand children) */
1886struct  avp;    /* AVP object */
1887
1888/* Some details about chaining:
1889 *
1890 *  A message is made of a header ( msg ) and 0 or more AVPs ( avp ).
1891 * The structure is a kind of tree, where some AVPs (grouped AVPs) can contain other AVPs.
1892 * Exemple:
1893 * msg
1894 *  |-avp
1895 *  |-gavp
1896 *  |   |-avp
1897 *  |   |-avp
1898 *  |   \-avp
1899 *  |-avp
1900 *  \-avp
1901 *
1902 */
1903
1904/* The following type is used to point to either a msg or an AVP */
1905typedef void msg_or_avp;
1906
1907/* The Diameter protocol version */
1908#define DIAMETER_VERSION        1
1909
1910/* In the two following types, some fields are marked (READONLY).
1911 * This means that the content of these fields will be overwritten by the daemon so modifying it is useless.
1912 */
1913
1914/* The following structure represents the header of a message. All data is in host byte order. */
1915struct msg_hdr {
1916        uint8_t          msg_version;           /* (READONLY) Version of Diameter: must be DIAMETER_VERSION. */
1917        uint32_t         msg_length;            /* (READONLY)(3 bytes) indicates the length of the message */
1918        uint8_t          msg_flags;             /* Message flags: CMD_FLAG_* */
1919        command_code_t   msg_code;              /* (3 bytes) the command-code. See dictionary-api.h for more detail */
1920        application_id_t msg_appl;              /* The application issuing this message */
1921        uint32_t         msg_hbhid;             /* The Hop-by-Hop identifier of the message */
1922        uint32_t         msg_eteid;             /* The End-to-End identifier of the message */
1923};
1924
1925/* The following structure represents the visible content of an AVP. All data is in host byte order. */
1926struct avp_hdr {
1927        avp_code_t       avp_code;              /* the AVP Code */
1928        uint8_t          avp_flags;             /* AVP_FLAG_* flags */
1929        uint32_t         avp_len;               /* (READONLY)(Only 3 bytes are used) the length of the AVP as described in the RFC */
1930        vendor_id_t      avp_vendor;            /* Only used if AVP_FLAG_VENDOR is present */
1931        union avp_value *avp_value;             /* pointer to the value of the AVP. NULL means that the value is not set / not understood.
1932                                                   One should not directly change this value. Use the msg_avp_setvalue function instead.
1933                                                   The content of the pointed structure can be changed directly, with this restriction:
1934                                                     if the AVP is an OctetString, and you change the value of the pointer avp_value->os.data, then
1935                                                     you must call free() on the previous value, and the new one must be free()-able.
1936                                                 */
1937};
1938
1939/* The following enum is used to browse inside message hierarchy (msg, gavp, avp) */
1940enum msg_brw_dir {
1941        MSG_BRW_NEXT = 1,       /* Get the next element at the same level, or NULL if this is the last element. */
1942        MSG_BRW_PREV,           /* Get the previous element at the same level, or NULL if this is the first element. */
1943        MSG_BRW_FIRST_CHILD,    /* Get the first child AVP of this element, if any. */
1944        MSG_BRW_LAST_CHILD,     /* Get the last child AVP of this element, if any. */
1945        MSG_BRW_PARENT,         /* Get the parent element of this element, if any. Only the msg_t object has no parent. */
1946        MSG_BRW_WALK            /* This is equivalent to FIRST_CHILD or NEXT or PARENT->next, first that is not NULL. Use this to walk inside all AVPs. */
1947};
1948
1949/* Some flags used in the functions bellow */
1950#define AVPFL_SET_BLANK_VALUE   0x01    /* When creating an AVP, initialize its value to a blank area */
1951#define AVPFL_MAX               AVPFL_SET_BLANK_VALUE   /* The biggest valid flag value */
1952       
1953#define MSGFL_ALLOC_ETEID       0x01    /* When creating a message, a new end-to-end ID is allocated and set in the message */
1954#define MSGFL_ANSW_ERROR        0x02    /* When creating an answer message, set the 'E' bit and use the generic error ABNF instead of command-specific ABNF */
1955#define MSGFL_ANSW_NOSID        0x04    /* When creating an answer message, do not add the Session-Id even if present in request */
1956#define MSGFL_MAX               MSGFL_ANSW_NOSID        /* The biggest valid flag value */
1957
1958/**************************************************/
1959/*   Message creation, manipulation, disposal     */
1960/**************************************************/
1961/*
1962 * FUNCTION:    fd_msg_avp_new
1963 *
1964 * PARAMETERS:
1965 *  model       : Pointer to a DICT_AVP dictionary object describing the avp to create, or NULL.
1966 *  flags       : Flags to use in creation (AVPFL_*).
1967 *  avp         : Upon success, pointer to the new avp is stored here.
1968 *
1969 * DESCRIPTION:
1970 *   Create a new AVP instance.
1971 *
1972 * RETURN VALUE:
1973 *  0           : The AVP is created.
1974 *  EINVAL      : A parameter is invalid.
1975 *  (other standard errors may be returned, too, with their standard meaning. Example:
1976 *    ENOMEM    : Memory allocation for the new avp failed.)
1977 */
1978int fd_msg_avp_new ( struct dict_object * model, int flags, struct avp ** avp );
1979
1980/*
1981 * FUNCTION:    fd_msg_new
1982 *
1983 * PARAMETERS:
1984 *  model       : Pointer to a DICT_COMMAND dictionary object describing the message to create, or NULL.
1985 *  flags       : combination of MSGFL_* flags.
1986 *  msg         : Upon success, pointer to the new message is stored here.
1987 *
1988 * DESCRIPTION:
1989 *   Create a new empty Diameter message.
1990 *
1991 * RETURN VALUE:
1992 *  0           : The message is created.
1993 *  EINVAL      : A parameter is invalid.
1994 *  (other standard errors may be returned, too, with their standard meaning. Example:
1995 *    ENOMEM    : Memory allocation for the new message failed.)
1996 */
1997int fd_msg_new ( struct dict_object * model, int flags, struct msg ** msg );
1998
1999/*
2000 * FUNCTION:    msg_new_answer_from_req
2001 *
2002 * PARAMETERS:
2003 *  dict        : Pointer to the dictionary containing the model of the query.
2004 *  msg         : The location of the query on function call. Updated by the location of answer message on return.
2005 *  flag        : Pass MSGFL_ANSW_ERROR to indicate if the answer is an error message (will set the 'E' bit)
2006 *
2007 * DESCRIPTION:
2008 *   This function creates the empty answer message corresponding to a request.
2009 *  The header is set properly (R flag, ccode, appid, hbhid, eteid)
2010 *  The Session-Id AVP is copied if present.
2011 *  The calling code should usually call fd_msg_rescode_set function on the answer.
2012 *  Upon return, the original query may be retrieved by calling fd_msg_answ_getq on the message.
2013 *
2014 * RETURN VALUE:
2015 *  0           : Operation complete.
2016 *  !0          : an error occurred.
2017 */
2018int fd_msg_new_answer_from_req ( struct dictionary * dict, struct msg ** msg, int flag );
2019
2020/*
2021 * FUNCTION:    fd_msg_browse
2022 *
2023 * PARAMETERS:
2024 *  reference   : Pointer to a struct msg or struct avp.
2025 *  dir         : Direction for browsing
2026 *  found       : If not NULL, updated with the element that has been found, if any, or NULL if no element was found / an error occurred.
2027 *  depth       : If not NULL, points to an integer representing the "depth" of this object in the tree. This is a relative value, updated on return.
2028 *
2029 * DESCRIPTION:
2030 *   Explore the content of a message object (hierarchy). If "found" is null, only error checking is performed.
2031 *  If "depth" is provided, it is updated as follow on successful function return:
2032 *   - not modified for MSG_BRW_NEXT and MSG_BRW_PREV.
2033 *   - *depth = *depth + 1 for MSG_BRW_FIRST_CHILD and MSG_BRW_LAST_CHILD.
2034 *   - *depth = *depth - 1 for MSG_BRW_PARENT.
2035 *   - *depth = *depth + X for MSG_BRW_WALK, with X between 1 (returned the 1st child) and -N (returned the Nth parent's next).
2036 *
2037 * RETURN VALUE:
2038 *  0           : found has been updated (if non NULL).
2039 *  EINVAL      : A parameter is invalid.
2040 *  ENOENT      : No element has been found where requested, and "found" was NULL (otherwise, *found is set to NULL and 0 is returned).
2041 */
2042int fd_msg_browse_internal ( msg_or_avp * reference, enum msg_brw_dir dir, msg_or_avp ** found, int * depth );
2043/* Macro to avoid having to cast the third parameter everywhere */
2044#define fd_msg_browse( ref, dir, found, depth ) \
2045        fd_msg_browse_internal( (ref), (dir), (void *)(found), (depth) )
2046
2047
2048/*
2049 * FUNCTION:    fd_msg_avp_add
2050 *
2051 * PARAMETERS:
2052 *  reference   : Pointer to a valid msg or avp.
2053 *  dir         : location where the new AVP should be inserted, relative to the reference. MSG_BRW_PARENT and MSG_BRW_WALK are not valid.
2054 *  avp         : pointer to the AVP object that must be inserted.
2055 *
2056 * DESCRIPTION:
2057 *   Adds an AVP into an object that can contain it: grouped AVP or message.
2058 * Note that the added AVP will be freed at the same time as the object it is added to,
2059 * so it should not be freed after the call to this function.
2060 *
2061 * RETURN VALUE:
2062 *  0           : The AVP has been added.
2063 *  EINVAL      : A parameter is invalid.
2064 */
2065int fd_msg_avp_add ( msg_or_avp * reference, enum msg_brw_dir dir, struct avp *avp);
2066
2067/*
2068 * FUNCTION:    fd_msg_search_avp
2069 *
2070 * PARAMETERS:
2071 *  msg         : The message structure in which to search the AVP.
2072 *  what        : The dictionary model of the AVP to search.
2073 *  avp         : location where the AVP reference is stored if found.
2074 *
2075 * DESCRIPTION:
2076 *   Search the first top-level AVP of a given model inside a message.
2077 * Note: only the first instance of the AVP is returned by this function.
2078 * Note: only top-level AVPs are searched, not inside grouped AVPs.
2079 * Use msg_browse if you need more advanced research features.
2080 *
2081 * RETURN VALUE:
2082 *  0           : The AVP has been found.
2083 *  EINVAL      : A parameter is invalid.
2084 *  ENOENT      : No AVP has been found, and "avp" was NULL (otherwise, *avp is set to NULL and 0 returned).
2085 */
2086int fd_msg_search_avp ( struct msg * msg, struct dict_object * what, struct avp ** avp );
2087
2088/*
2089 * FUNCTION:    fd_msg_free
2090 *
2091 * PARAMETERS:
2092 *  object      : pointer to the message or AVP object that must be unlinked and freed.
2093 *
2094 * DESCRIPTION:
2095 *   Unlink and free a message or AVP object and its children.
2096 *  If the object is an AVP linked into a message, the AVP is removed before being freed.
2097 *
2098 * RETURN VALUE:
2099 *  0           : The message has been freed.
2100 *  EINVAL      : A parameter is invalid.
2101 */
2102int fd_msg_free ( msg_or_avp * object );
2103
2104/***************************************/
2105/*   Dump functions                    */
2106/***************************************/
2107/*
2108 * FUNCTION:    fd_msg_dump_*
2109 *
2110 * PARAMETERS:
2111 *  level       : the log level (INFO, FULL, ...) at which the object is dumped
2112 *  obj         : A msg or avp object.
2113 *
2114 * DESCRIPTION:
2115 *   These functions dump the content of a message to the debug log
2116 * either recursively or only the object itself.
2117 *
2118 * RETURN VALUE:
2119 *   -
2120 */
2121void fd_msg_dump_walk ( int level, msg_or_avp *obj );
2122void fd_msg_dump_one  ( int level, msg_or_avp *obj );
2123
2124/*
2125 * FUNCTION:    fd_msg_log
2126 *
2127 * PARAMETERS:
2128 *  cause        : Context for calling this function. This allows the log facility to be configured precisely.
2129 *  msg          : The message to log.
2130 *  prefix_format: Printf-style format message that is printed ahead of the message. Might be reason for drop or so.
2131 *
2132 * DESCRIPTION:
2133 *   This function is called when a Diameter message reaches some particular points in the fD framework.
2134 * The actual effect is configurable: log in a separate file, dump in the debug log, etc.
2135 *
2136 * RETURN VALUE:
2137 *   -
2138 */
2139enum fd_msg_log_cause {
2140        FD_MSG_LOG_DROPPED = 0,  /* message has been dropped by the framework */ 
2141        FD_MSG_LOG_RECEIVED,     /* message received from the network */ 
2142        FD_MSG_LOG_SENT,         /* message sent to another peer */ 
2143        FD_MSG_LOG_NODELIVER     /* message could not be delivered to any peer */ 
2144};
2145#define FD_MSG_LOG_MAX FD_MSG_LOG_NODELIVER
2146void fd_msg_log( enum fd_msg_log_cause cause, struct msg * msg, const char * prefix_format, ... );
2147
2148/* configure the msg_log facility */
2149enum fd_msg_log_method {
2150        FD_MSG_LOGTO_DEBUGONLY = 0, /* Simply log the message with other debug information, at the INFO level. This is default */
2151        FD_MSG_LOGTO_FILE,    /* Messages are dumped in a single file, defined in arg */
2152        FD_MSG_LOGTO_DIR    /* Messages are dumped in different files within one directory defined in arg. */
2153};
2154int fd_msg_log_config(enum fd_msg_log_cause cause, enum fd_msg_log_method method, const char * arg);
2155void fd_msg_log_init(struct dictionary *dict);
2156
2157/*********************************************/
2158/*   Message metadata management functions   */
2159/*********************************************/
2160/*
2161 * FUNCTION:    fd_msg_model
2162 *
2163 * PARAMETERS:
2164 *  reference   : Pointer to a valid msg or avp.
2165 *  model       : on success, pointer to the dictionary model of this command or AVP. NULL if the model is unknown.
2166 *
2167 * DESCRIPTION:
2168 *   Retrieve the dictionary object describing this message or avp. If the object is unknown or the fd_msg_parse_dict has not been called,
2169 *  *model is set to NULL.
2170 *
2171 * RETURN VALUE:
2172 *  0           : The model has been set.
2173 *  EINVAL      : A parameter is invalid.
2174 */
2175int fd_msg_model ( msg_or_avp * reference, struct dict_object ** model );
2176
2177/*
2178 * FUNCTION:    fd_msg_hdr
2179 *
2180 * PARAMETERS:
2181 *  msg         : Pointer to a valid message object.
2182 *  pdata       : Upon success, pointer to the msg_hdr structure of this message. The fields may be modified.
2183 *
2184 * DESCRIPTION:
2185 *   Retrieve location of modifiable section of a message.
2186 *
2187 * RETURN VALUE:
2188 *  0           : The location has been written.
2189 *  EINVAL      : A parameter is invalid.
2190 */
2191int fd_msg_hdr ( struct msg *msg, struct msg_hdr ** pdata );
2192
2193/*
2194 * FUNCTION:    fd_msg_avp_hdr
2195 *
2196 * PARAMETERS:
2197 *  avp         : Pointer to a valid avp object.
2198 *  pdata       : Upon success, pointer to the avp_hdr structure of this avp. The fields may be modified.
2199 *
2200 * DESCRIPTION:
2201 *   Retrieve location of modifiable data of an avp.
2202 *
2203 * RETURN VALUE:
2204 *  0           : The location has been written.
2205 *  EINVAL      : A parameter is invalid.
2206 */
2207int fd_msg_avp_hdr ( struct avp *avp, struct avp_hdr ** pdata );
2208
2209/*
2210 * FUNCTION:    fd_msg_answ_associate, fd_msg_answ_getq, fd_msg_answ_detach
2211 *
2212 * PARAMETERS:
2213 *  answer      : the received answer message
2214 *  query       : the corresponding query that had been sent
2215 *
2216 * DESCRIPTION:
2217 *  fd_msg_answ_associate associates a query msg with the received answer.
2218 * Query is retrieved with fd_msg_answ_getq.
2219 * If answer message is freed, the query is also freed.
2220 * If the msg_answ_detach function is called, the association is removed.
2221 * This is meant to be called from the daemon only.
2222 *
2223 * RETURN VALUE:
2224 *  0     : ok
2225 *  EINVAL: a parameter is invalid
2226 */
2227int fd_msg_answ_associate( struct msg * answer, struct msg * query );
2228int fd_msg_answ_getq     ( struct msg * answer, struct msg ** query );
2229int fd_msg_answ_detach   ( struct msg * answer );
2230
2231/*
2232 * FUNCTION:    fd_msg_anscb_associate, fd_msg_anscb_get
2233 *
2234 * PARAMETERS:
2235 *  msg         : the answer message
2236 *  anscb       : the callback to associate with the message
2237 *  data        : the data to pass to the callback
2238 *  timeout     : (optional, use NULL if no timeout) a timeout associated with calling the cb.
2239 *
2240 * DESCRIPTION:
2241 *  Associate or retrieve a callback with an answer message.
2242 * This is meant to be called from the daemon only.
2243 *
2244 * RETURN VALUE:
2245 *  0     : ok
2246 *  EINVAL: a parameter is invalid
2247 */
2248int fd_msg_anscb_associate( struct msg * msg, void ( *anscb)(void *, struct msg **), void  * data, const struct timespec *timeout );
2249int fd_msg_anscb_get      ( struct msg * msg, void (**anscb)(void *, struct msg **), void ** data );
2250struct timespec *fd_msg_anscb_gettimeout( struct msg * msg ); /* returns NULL or a valid non-0 timespec */
2251
2252/*
2253 * FUNCTION:    fd_msg_rt_associate, fd_msg_rt_get
2254 *
2255 * PARAMETERS:
2256 *  msg         : the query message to be sent
2257 *  list        : the ordered list of possible next-peers
2258 *
2259 * DESCRIPTION:
2260 *  Associate a routing list with a query, and retrieve it.
2261 * If the message is freed, the list is also freed.
2262 *
2263 * RETURN VALUE:
2264 *  0     : ok
2265 *  EINVAL: a parameter is invalid
2266 */
2267int fd_msg_rt_associate( struct msg * msg, struct rt_data ** rtd );
2268int fd_msg_rt_get      ( struct msg * msg, struct rt_data ** rtd );
2269
2270/*
2271 * FUNCTION:    fd_msg_is_routable
2272 *
2273 * PARAMETERS:
2274 *  msg         : A msg object.
2275 *
2276 * DESCRIPTION:
2277 *   This function returns a boolean telling if a given message is routable in the Diameter network,
2278 *  or if it is a local link message only (ex: CER/CEA, DWR/DWA, ...).
2279 *
2280 * RETURN VALUE:
2281 *  0           : The message is not routable / an error occurred.
2282 *  1           : The message is routable.
2283 */
2284int fd_msg_is_routable ( struct msg * msg );
2285
2286/*
2287 * FUNCTION:    fd_msg_source_(g/s)et
2288 *
2289 * PARAMETERS:
2290 *  msg         : A msg object.
2291 *  diamid,len  : The diameter id of the peer from which this message was received.
2292 *  add_rr      : if true, a Route-Record AVP is added to the message with content diamid. In that case, dict must be supplied.
2293 *  dict        : a dictionary with definition of Route-Record AVP (if add_rr is true)
2294 *
2295 * DESCRIPTION:
2296 *   Store or retrieve the diameted id of the peer from which this message was received.
2297 * Will be used for example by the routing module to add the Route-Record AVP in forwarded requests,
2298 * or to direct answers to the appropriate peer.
2299 *
2300 * RETURN VALUE:
2301 *  0           : Operation complete.
2302 *  !0          : an error occurred.
2303 */
2304int fd_msg_source_set( struct msg * msg, DiamId_t diamid, size_t diamidlen, int add_rr, struct dictionary * dict );
2305int fd_msg_source_get( struct msg * msg, DiamId_t *diamid, size_t * diamidlen );
2306
2307/*
2308 * FUNCTION:    fd_msg_eteid_get
2309 *
2310 * PARAMETERS:
2311 *  -
2312 *
2313 * DESCRIPTION:
2314 *   Get a new unique end-to-end id value for the local peer.
2315 *
2316 * RETURN VALUE:
2317 *  The new assigned value. No error code is defined.
2318 */
2319uint32_t fd_msg_eteid_get ( void );
2320
2321
2322/*
2323 * FUNCTION:    fd_msg_sess_get
2324 *
2325 * PARAMETERS:
2326 *  dict        : the dictionary that contains the Session-Id AVP definition
2327 *  msg         : A valid message.
2328 *  session     : Location to store the session pointer when retrieved.
2329 *  isnew       : Indicates if the session has been created.
2330 *
2331 * DESCRIPTION:
2332 *  This function retrieves or creates the session object corresponding to a message.
2333 * If the message does not contain a Session-Id AVP, *session == NULL on return.
2334 * Note that the Session-Id AVP must never be modified after created in a message.
2335 *
2336 * RETURN VALUE:
2337 *  0 : success
2338 * !0 : standard error code.
2339 */
2340int fd_msg_sess_get(struct dictionary * dict, struct msg * msg, struct session ** session, int * isnew);
2341
2342/***************************************/
2343/*   Manage AVP values                 */
2344/***************************************/
2345
2346/*
2347 * FUNCTION:    fd_msg_avp_setvalue
2348 *
2349 * PARAMETERS:
2350 *  avp         : Pointer to a valid avp object with a NULL avp_value pointer. The model must be known.
2351 *  value       : pointer to an avp_value. The content will be COPIED into the internal storage area.
2352 *               If data type is an octetstring, the data is also copied.
2353 *               If value is a NULL pointer, the previous data is erased and value is unset in the AVP.
2354 *
2355 * DESCRIPTION:
2356 *   Initialize the avp_value field of an AVP header.
2357 *
2358 * RETURN VALUE:
2359 *  0           : The avp_value pointer has been set.
2360 *  EINVAL      : A parameter is invalid.
2361 */
2362int fd_msg_avp_setvalue ( struct avp *avp, union avp_value *value );
2363
2364/*
2365 * FUNCTION:    fd_msg_avp_value_encode
2366 *
2367 * PARAMETERS:
2368 *  avp         : Pointer to a valid avp object with a NULL avp_value. The model must be known.
2369 *  data        : Pointer to the data that must be encoded as AVP value and stored in the AVP.
2370 *               This is only valid for AVPs of derived type for which type_data_encode callback is set. (ex: Address type)
2371 *
2372 * DESCRIPTION:
2373 *   Initialize the avp_value field of an AVP object from formatted data, using the AVP's type "type_data_encode" callback.
2374 *
2375 * RETURN VALUE:
2376 *  0           : The avp_value has been set.
2377 *  EINVAL      : A parameter is invalid.
2378 *  ENOTSUP     : There is no appropriate callback registered with this AVP's type.
2379 */
2380int fd_msg_avp_value_encode ( void *data, struct avp *avp );
2381/*
2382 * FUNCTION:    fd_msg_avp_value_interpret
2383 *
2384 * PARAMETERS:
2385 *  avp         : Pointer to a valid avp object with a non-NULL avp_value value.
2386 *  data        : Upon success, formatted interpretation of the AVP value is stored here.
2387 *
2388 * DESCRIPTION:
2389 *   Interpret the content of an AVP of Derived type and store the result in data pointer. The structure
2390 * of the data pointer is dependent on the AVP type. This function calls the "type_data_interpret" callback
2391 * of the type.
2392 *
2393 * RETURN VALUE:
2394 *  0           : The avp_value has been set.
2395 *  EINVAL      : A parameter is invalid.
2396 *  ENOTSUP     : There is no appropriate callback registered with this AVP's type.
2397 */
2398int fd_msg_avp_value_interpret ( struct avp *avp, void *data );
2399
2400
2401/***************************************/
2402/*   Message parsing functions         */
2403/***************************************/
2404
2405/*
2406 * FUNCTION:    fd_msg_bufferize
2407 *
2408 * PARAMETERS:
2409 *  msg         : A valid msg object. All AVPs must have a value set.
2410 *  buffer      : Upon success, this points to a buffer (malloc'd) containing the message ready for network transmission (or security transformations).
2411 *               The buffer may be freed after use.
2412 *  len         : if not NULL, the size of the buffer is written here. In any case, this size is updated in the msg header.
2413 *
2414 * DESCRIPTION:
2415 *   Renders a message in memory as a buffer that can be sent over the network to the next peer.
2416 *
2417 * RETURN VALUE:
2418 *  0           : The location has been written.
2419 *  EINVAL      : The buffer does not contain a valid Diameter message.
2420 *  ENOMEM      : Unable to allocate enough memory to create the buffer object.
2421 */
2422int fd_msg_bufferize ( struct msg * msg, uint8_t ** buffer, size_t * len );
2423
2424/*
2425 * FUNCTION:    fd_msg_parse_buffer
2426 *
2427 * PARAMETERS:
2428 *  buffer      : Pointer to a buffer containing a message received from the network.
2429 *  buflen      : the size in bytes of the buffer.
2430 *  msg         : Upon success, this points to a valid msg object. No AVP value is resolved in this object, nor grouped AVP.
2431 *
2432 * DESCRIPTION:
2433 *   This function parses a buffer an creates a msg object to represent the structure of the message.
2434 *  Since no dictionary lookup is performed, the values of the AVPs are not interpreted. To interpret the values,
2435 *  the returned message object must be passed to fd_msg_parse_dict function.
2436 *  The buffer pointer is saved inside the message and will be freed when not needed anymore.
2437 *
2438 * RETURN VALUE:
2439 *  0           : The location has been written.
2440 *  ENOMEM      : Unable to allocate enough memory to create the msg object.
2441 *  EBADMSG     : The buffer does not contain a valid Diameter message (or is truncated).
2442 *  EINVAL      : A parameter is invalid.
2443 */
2444int fd_msg_parse_buffer ( uint8_t ** buffer, size_t buflen, struct msg ** msg );
2445
2446/* Parsing Error Information structure */
2447struct fd_pei {
2448        char *          pei_errcode;    /* name of the error code to use */
2449        struct avp *    pei_avp;        /* pointer to invalid or missing AVP (to be freed) */
2450        char *          pei_message;    /* Overwrite default message if needed */
2451        int             pei_protoerr;   /* do we set the 'E' bit in the error message ? */
2452};
2453
2454/*
2455 * FUNCTION:    fd_msg_parse_dict
2456 *
2457 * PARAMETERS:
2458 *  object      : A msg or AVP object as returned by fd_msg_parse_buffer.
2459 *  dict        : the dictionary containing the objects definitions to use for resolving all AVPs.
2460 *  error_info  : If not NULL, will contain the detail about error upon return. May be used to generate an error reply.
2461 *
2462 * DESCRIPTION:
2463 *   This function looks up for the command and each children AVP definitions in the dictionary.
2464 *  If the dictionary definition is found, avp_model is set and the value of the AVP is interpreted accordingly and:
2465 *   - for grouped AVPs, the children AVP are created and interpreted also.
2466 *   - for numerical AVPs, the value is converted to host byte order and saved in the avp_value field.
2467 *   - for octetstring AVPs, the string is copied into a new buffer and its address is saved in avp_value.
2468 *  If the dictionary definition is not found, avp_model is set to NULL and
2469 *  the content of the AVP is saved as an octetstring in an internal structure. avp_value is NULL.
2470 *  As a result, after this function has been called, there is no more dependency of the msg object to the message buffer, that is freed.
2471 *
2472 * RETURN VALUE:
2473 *  0           : The message has been fully parsed as described.
2474 *  EINVAL      : The msg parameter is invalid for this operation.
2475 *  ENOMEM      : Unable to allocate enough memory to complete the operation.
2476 *  ENOTSUP     : No dictionary definition for the command or one of the mandatory AVP was found.
2477 */
2478int fd_msg_parse_dict ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info );
2479
2480/*
2481 * FUNCTION:    fd_msg_parse_rules
2482 *
2483 * PARAMETERS:
2484 *  object      : A msg or grouped avp object that must be verified.
2485 *  dict        : The dictionary containing the rules definitions.
2486 *  error_info  : If not NULL, the first problem information will be saved here.
2487 *
2488 * DESCRIPTION:
2489 *   Check that the children of the object do not conflict with the dictionary rules (ABNF compliance).
2490 *
2491 * RETURN VALUE:
2492 *  0           : The message has been fully parsed and complies to the defined rules.
2493 *  EBADMSG     : A conflict was detected, or a mandatory AVP is unknown in the dictionary.
2494 *  EINVAL      : The msg or avp object is invalid for this operation.
2495 *  ENOMEM      : Unable to allocate enough memory to complete the operation.
2496 */
2497int fd_msg_parse_rules ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info);
2498
2499
2500
2501/*
2502 * FUNCTION:    fd_msg_update_length
2503 *
2504 * PARAMETERS:
2505 *  object      : Pointer to a valid msg or avp.
2506 *
2507 * DESCRIPTION:
2508 *   Update the length field of the object passed as parameter.
2509 * As a side effect, all children objects are also updated. Therefore, all avp_value fields of
2510 * the children AVPs must be set, or an error will occur.
2511 *
2512 * RETURN VALUE:
2513 *  0           : The size has been recomputed.
2514 *  EINVAL      : A parameter is invalid.
2515 */
2516int fd_msg_update_length ( msg_or_avp * object );
2517
2518
2519/*============================================================*/
2520/*                         DISPATCH                           */
2521/*============================================================*/
2522
2523/* Dispatch module (passing incoming messages to extensions registered callbacks)
2524 * is split between the library and the daemon.
2525 *
2526 * The library provides the support for associating dispatch callbacks with
2527 * dictionary objects.
2528 *
2529 * The daemon is responsible for calling the callbacks for a message when appropriate.
2530 *
2531 *
2532 * The dispatch module has two main roles:
2533 *  - help determine if a message can be handled locally (during the routing step)
2534 *        This decision involves only the application-id of the message.
2535 *  - pass the message to the callback(s) that will handle it (during the dispatch step)
2536 *
2537 * The first role is handled by the daemon.
2538 *
2539 * About the second, these are the possibilities for registering a dispatch callback:
2540 *
2541 * -> For All messages.
2542 *  This callback is called for all messages that are handled locally. This should be used only
2543 *  for debug purpose.
2544 *
2545 * -> by AVP value (constants only).
2546 *  This callback will be called when a message is received and contains an AVP with a specified enumerated value.
2547 *
2548 * -> by AVP.
2549 *  This callback will be called when the received message contains a certain AVP.
2550 *
2551 * -> by command-code.
2552 *  This callback will be called when the message is a specific command (and 'R' flag).
2553 *
2554 * -> by application.
2555 *  This callback will be called when the message has a specific application-id.
2556 *
2557 * ( by vendor: would this be useful? it may be added later)
2558 */
2559enum disp_how {
2560        DISP_HOW_ANY = 1,               /* Any message. This should be only used for debug. */
2561        DISP_HOW_APPID,                 /* Any message with the specified application-id */
2562        DISP_HOW_CC,                    /* Messages of the specified command-code (request or answer). App id may be specified. */
2563        DISP_HOW_AVP,                   /* Messages containing a specific AVP. Command-code and App id may be specified. */
2564        DISP_HOW_AVP_ENUMVAL            /* Messages containing a specific AVP with a specific enumerated value. Command-code and App id may be specified. */
2565};
2566/*
2567 * Several criteria may be selected at the same time, for example command-code AND application id.
2568 *
2569 * If several callbacks are registered for the same object, they are called in the order they were registered.
2570 * The order in which the callbacks are called is:
2571 *  DISP_HOW_ANY
2572 *  DISP_HOW_AVP_ENUMVAL & DISP_HOW_AVP
2573 *  DISP_HOW_CC
2574 *  DISP_HOW_APPID
2575 */
2576
2577/* When a callback is registered, a "when" argument is passed in addition to the disp_how value,
2578 * to specify which values the criteria must match. */
2579struct disp_when {
2580        struct dict_object *    app;
2581        struct dict_object *    command;
2582        struct dict_object *    avp;
2583        struct dict_object *    value;
2584};
2585
2586/* Note that all the dictionary objects should really belong to the same dictionary!
2587 *
2588 * Here is the details on this "when" argument, depending on the disp_how value.
2589 *
2590 * DISP_HOW_ANY.
2591 *  In this case, "when" must be NULL.
2592 *
2593 * DISP_HOW_APPID.
2594 *  Only the "app_id" field must be set, other fields are ignored. It points to a dictionary object of type DICT_APPLICATION.
2595 *
2596 * DISP_HOW_CC.
2597 *  The "command" field must be defined and point to a dictionary object of type DICT_COMMAND.
2598 *  The "app_id" may be also set. In the case it is set, it restricts the callback to be called only with this command-code and app id.
2599 *  The other fields are ignored.
2600 *
2601 * DISP_HOW_AVP.
2602 *  The "avp" field of the structure must be set and point to a dictionary object of type DICT_AVP.
2603 *  The "app_id" field may be set to restrict the messages matching to a specific app id.
2604 *  The "command" field may also be set to a valid DICT_COMMAND object.
2605 *  The content of the "value" field is ignored.
2606 *
2607 * DISP_HOW_AVP_ENUMVAL.
2608 *  All fields have the same constraints and meaning as in DISP_REG_AVP. In addition, the "value" field must be set
2609 *  and points to a valid DICT_ENUMVAL object.
2610 *
2611 * Here is a sumary of the fields: ( M : must be set; m : may be set; 0 : ignored )
2612 *  field:     app_id    command     avp    value
2613 * APPID :       M          0         0       0
2614 * CC    :       m          M         0       0
2615 * AVP   :       m          m         M       0
2616 * ENUMVA:       m          m         M       M
2617 */
2618
2619enum disp_action {
2620        DISP_ACT_CONT,  /* The next handler should be called, unless *msg == NULL. */
2621        DISP_ACT_SEND,  /* The updated message must be sent. No further callback is called. */
2622        DISP_ACT_ERROR  /* An error must be created and sent as a reply -- not valid for callbacks, only for fd_msg_dispatch. */
2623};
2624/* The callbacks that are registered have the following prototype:
2625 *      int dispatch_callback( struct msg ** msg, struct avp * avp, struct session * session, enum disp_action * action );
2626 *
2627 * CALLBACK:    dispatch_callback
2628 *
2629 * PARAMETERS:
2630 *  msg         : the received message on function entry. may be updated to answer on return (see description)
2631 *  avp         : for callbacks registered with DISP_HOW_AVP or DISP_HOW_AVP_ENUMVAL, direct link to the triggering AVP.
2632 *  session     : if the message contains a Session-Id AVP, the corresponding session object, NULL otherwise.
2633 *  opaque      : An opaque pointer that is registered along the session handler.
2634 *  action      : upon return, this tells the daemon what to do next.
2635 *
2636 * DESCRIPTION:
2637 *   Called when a received message matchs the condition for which the callback was registered.
2638 * This callback may do any kind of processing on the message, including:
2639 *  - create an answer for a request.
2640 *  - proxy a request or message, add / remove the Proxy-Info AVP, then forward the message.
2641 *  - update a routing table or start a connection with a new peer, then forward the message.
2642 *  - ...
2643 *
2644 * When *action == DISP_ACT_SEND on callback return, the msg pointed by *msg is passed to the routing module for sending.
2645 * When *action == DISP_ACT_CONT, the next registered callback is called.
2646 *  When the last callback gives also DISP_ACT_CONT action value, a default handler is called. It's behavior is as follow:
2647 *   - if the message is an answer, it is discarded.
2648 *   - if the message is a request, it is passed again to the routing stack, and marked as non-local handling.
2649 *
2650 * RETURN VALUE:
2651 *  0           : The callback executed successfully and updated *action appropriately.
2652 *  !0          : standard errors. In case of error, the message is discarded.
2653 */
2654
2655/* This structure represents a handler for a registered callback, allowing its de-registration */
2656struct disp_hdl;
2657
2658/*
2659 * FUNCTION:    fd_disp_register
2660 *
2661 * PARAMETERS:
2662 *  cb            : The callback function to register (see dispatch_callback description above).
2663 *  how           : How the callback must be registered.
2664 *  when          : Values that must match, depending on the how argument.
2665 *  opaque        : A pointer that is passed back to the handler. The content is not interpreted by the framework.
2666 *  handle        : On success, a handler to the registered callback is stored here if not NULL.
2667 *                 This handler can be used to unregister the cb.
2668 *
2669 * DESCRIPTION:
2670 *   Register a new callback to handle messages delivered locally.
2671 *
2672 * RETURN VALUE:
2673 *  0           : The callback is registered.
2674 *  EINVAL      : A parameter is invalid.
2675 *  ENOMEM      : Not enough memory to complete the operation
2676 */
2677int fd_disp_register ( int (*cb)( struct msg **, struct avp *, struct session *, void *, enum disp_action *), 
2678                        enum disp_how how, struct disp_when * when, void * opaque, struct disp_hdl ** handle );
2679
2680/*
2681 * FUNCTION:    fd_disp_unregister
2682 *
2683 * PARAMETERS:
2684 *  handle       : Location of the handle of the callback that must be unregistered.
2685 *  opaque       : If not NULL, the opaque data that was registered is restored here.
2686 *
2687 * DESCRIPTION:
2688 *   Removes a callback previously registered by fd_disp_register.
2689 *
2690 * RETURN VALUE:
2691 *  0           : The callback is unregistered.
2692 *  EINVAL      : A parameter is invalid.
2693 */
2694int fd_disp_unregister ( struct disp_hdl ** handle, void ** opaque );
2695
2696/* Destroy all handlers */
2697void fd_disp_unregister_all ( void );
2698
2699/*
2700 * FUNCTION:    fd_msg_dispatch
2701 *
2702 * PARAMETERS:
2703 *  msg         : A msg object that have already been fd_msg_parse_dict.
2704 *  session     : The session corresponding to this object, if any.
2705 *  action      : Upon return, the action that must be taken on the message
2706 *  error_code  : Upon return with action == DISP_ACT_ERROR, contains the error (such as "DIAMETER_UNABLE_TO_COMPLY")
2707 *
2708 * DESCRIPTION:
2709 *   Call all handlers registered for a given message.
2710 *  The session must have already been resolved on entry.
2711 *  The msg pointed may be updated during this process.
2712 *  Upon return, the action parameter points to what must be done next.
2713 *
2714 * RETURN VALUE:
2715 *  0           : Success.
2716 *  EINVAL      : A parameter is invalid.
2717 *  (other errors)
2718 */
2719int fd_msg_dispatch ( struct msg ** msg, struct session * session, enum disp_action *action, char ** error_code );
2720
2721
2722
2723/*============================================================*/
2724/*                     QUEUES                                 */
2725/*============================================================*/
2726
2727/* Management of FIFO queues of elements */
2728
2729/* A queue is an opaque object */
2730struct fifo;
2731
2732/*
2733 * FUNCTION:    fd_fifo_new
2734 *
2735 * PARAMETERS:
2736 *  queue       : Upon success, a pointer to the new queue is saved here.
2737 *
2738 * DESCRIPTION:
2739 *  Create a new empty queue.
2740 *
2741 * RETURN VALUE :
2742 *  0           : The queue has been initialized successfully.
2743 *  EINVAL      : The parameter is invalid.
2744 *  ENOMEM      : Not enough memory to complete the creation. 
2745 */
2746int fd_fifo_new ( struct fifo ** queue );
2747
2748/*
2749 * FUNCTION:    fd_fifo_del
2750 *
2751 * PARAMETERS:
2752 *  queue       : Pointer to an empty queue to delete.
2753 *
2754 * DESCRIPTION:
2755 *  Destroys a queue. This is only possible if no thread is waiting for an element,
2756 * and the queue is empty.
2757 *
2758 * RETURN VALUE:
2759 *  0           : The queue has been destroyed successfully.
2760 *  EINVAL      : The parameter is invalid.
2761 */
2762int fd_fifo_del ( struct fifo  ** queue );
2763
2764/*
2765 * FUNCTION:    fd_fifo_move
2766 *
2767 * PARAMETERS:
2768 *  oldq        : Location of a FIFO that is to be emptied.
2769 *  newq        : A FIFO that will receive the old data.
2770 *  loc_update  : if non NULL, a place to store the pointer to new FIFO atomically with the move.
2771 *
2772 * DESCRIPTION:
2773 *  Empties a queue and move its content to another one atomically.
2774 *
2775 * RETURN VALUE:
2776 *  0           : The queue has been destroyed successfully.
2777 *  EINVAL      : A parameter is invalid.
2778 */
2779int fd_fifo_move ( struct fifo * oldq, struct fifo * newq, struct fifo ** loc_update );
2780
2781/*
2782 * FUNCTION:    fd_fifo_length
2783 *
2784 * PARAMETERS:
2785 *  queue       : The queue from which to retrieve the number of elements.
2786 *  length      : Upon success, the current number of elements in the queue is stored here.
2787 *
2788 * DESCRIPTION:
2789 *  Retrieve the number of elements in a queue.
2790 *
2791 * RETURN VALUE:
2792 *  0           : The length of the queue has been written.
2793 *  EINVAL      : A parameter is invalid.
2794 */
2795int fd_fifo_length ( struct fifo * queue, int * length );
2796int fd_fifo_length_noerr ( struct fifo * queue ); /* no error checking version */
2797
2798/*
2799 * FUNCTION:    fd_fifo_setthrhd
2800 *
2801 * PARAMETERS:
2802 *  queue       : The queue for which the thresholds are being set.
2803 *  data        : An opaque pointer that is passed to h_cb and l_cb callbacks.
2804 *  high        : The high-level threshold. If the number of elements in the queue increase to this value, h_cb is called.
2805 *  h_cb        : if not NULL, a callback to call when the queue lengh is bigger than "high".
2806 *  low         : The low-level threshold. Must be < high.
2807 *  l_cb        : If the number of elements decrease to low, this callback is called.
2808 *
2809 * DESCRIPTION:
2810 *  This function allows to adjust the number of producer / consumer threads of a queue.
2811 * If the consumer are slower than the producers, the number of elements in the queue increase.
2812 * By setting a "high" value, we allow a callback to be called when this number is too high.
2813 * The typical use would be to create an additional consumer thread in this callback.
2814 * If the queue continues to grow, the callback will be called again when the length is 2 * high, then 3*high, ... N * high
2815 * (the callback itself should implement a limit on the number of consumers that can be created)
2816 * When the queue starts to decrease, and the number of elements go under ((N - 1) * high + low, the l_cb callback is called
2817 * and would typially stop one of the consumer threads. If the queue continues to reduce, l_cb is again called at (N-2)*high + low,
2818 * and so on.
2819 *
2820 * Since there is no destructor for the data pointer, if cleanup operations are required, they should be performed in
2821 * l_cb when the length of the queue is becoming < low.
2822 *
2823 * Note that the callbacks are called synchronously, during fd_fifo_post or fd_fifo_get. Their operation should be quick.
2824 *
2825 * RETURN VALUE:
2826 *  0           : The thresholds have been set
2827 *  EINVAL      : A parameter is invalid.
2828 */
2829int fd_fifo_setthrhd ( struct fifo * queue, void * data, uint16_t high, void (*h_cb)(struct fifo *, void **), uint16_t low, void (*l_cb)(struct fifo *, void **) );
2830
2831/*
2832 * FUNCTION:    fd_fifo_post
2833 *
2834 * PARAMETERS:
2835 *  queue       : The queue in which the element must be posted.
2836 *  item        : The element that is put in the queue.
2837 *
2838 * DESCRIPTION:
2839 *  An element is added in a queue. Elements are retrieved from the queue in FIFO order
2840 *  with the fd_fifo_get, fd_fifo_tryget, or fd_fifo_timedget functions.
2841 *
2842 * RETURN VALUE:
2843 *  0           : The element is queued.
2844 *  EINVAL      : A parameter is invalid.
2845 *  ENOMEM      : Not enough memory to complete the operation.
2846 */
2847int fd_fifo_post_int ( struct fifo * queue, void ** item );
2848#define fd_fifo_post(queue, item) \
2849        fd_fifo_post_int((queue), (void *)(item))
2850
2851/*
2852 * FUNCTION:    fd_fifo_get
2853 *
2854 * PARAMETERS:
2855 *  queue       : The queue from which the first element must be retrieved.
2856 *  item        : On return, the first element of the queue is stored here.
2857 *
2858 * DESCRIPTION:
2859 *  This function retrieves the first element from a queue. If the queue is empty, the function will block the
2860 * thread until a new element is posted to the queue, or until the thread is canceled (in which case the
2861 * function does not return).
2862 *
2863 * RETURN VALUE:
2864 *  0           : A new element has been retrieved.
2865 *  EINVAL      : A parameter is invalid.
2866 */
2867int fd_fifo_get_int ( struct fifo * queue, void ** item );
2868#define fd_fifo_get(queue, item) \
2869        fd_fifo_get_int((queue), (void *)(item))
2870
2871/*
2872 * FUNCTION:    fd_fifo_tryget
2873 *
2874 * PARAMETERS:
2875 *  queue       : The queue from which the element must be retrieved.
2876 *  item        : On return, the first element of the queue is stored here.
2877 *
2878 * DESCRIPTION:
2879 *  This function is similar to fd_fifo_get, except that it will not block if
2880 * the queue is empty, but return EWOULDBLOCK instead.
2881 *
2882 * RETURN VALUE:
2883 *  0           : A new element has been retrieved.
2884 *  EINVAL      : A parameter is invalid.
2885 *  EWOULDBLOCK : The queue was empty.
2886 */
2887int fd_fifo_tryget_int ( struct fifo * queue, void ** item );
2888#define fd_fifo_tryget(queue, item) \
2889        fd_fifo_tryget_int((queue), (void *)(item))
2890
2891/*
2892 * FUNCTION:    fd_fifo_timedget
2893 *
2894 * PARAMETERS:
2895 *  queue       : The queue from which the element must be retrieved.
2896 *  item        : On return, the element is stored here.
2897 *  abstime     : the absolute time until which we allow waiting for an item.
2898 *
2899 * DESCRIPTION:
2900 *  This function is similar to fd_fifo_get, except that it will block if the queue is empty
2901 * only until the absolute time abstime (see pthread_cond_timedwait for + info).
2902 * If the queue is still empty when the time expires, the function returns ETIMEDOUT
2903 *
2904 * RETURN VALUE:
2905 *  0           : A new item has been retrieved.
2906 *  EINVAL      : A parameter is invalid.
2907 *  ETIMEDOUT   : The time out has passed and no item has been received.
2908 */
2909int fd_fifo_timedget_int ( struct fifo * queue, void ** item, const struct timespec *abstime );
2910#define fd_fifo_timedget(queue, item, abstime) \
2911        fd_fifo_timedget_int((queue), (void *)(item), (abstime))
2912
2913/* Dump a fifo list and optionally its inner elements -- beware of deadlocks! */
2914void fd_fifo_dump(int level, char * name, struct fifo * queue, void (*dump_item)(int level, void * item));
2915
2916#endif /* _LIBFDPROTO_H */
Note: See TracBrowser for help on using the repository browser.