Navigation


source: freeDiameter/include/freeDiameter/libfdproto.h @ 736:9af507b1bd23

Last change on this file since 736:9af507b1bd23 was 736:9af507b1bd23, checked in by Sebastien Decugis <sdecugis@nict.go.jp>, 11 years ago

Move error messages to INFO level also

File size: 110.0 KB
Line 
1/*********************************************************************************************************
2* Software License Agreement (BSD License)                                                               *
3* Author: Sebastien Decugis <sdecugis@nict.go.jp>                                                        *
4*                                                                                                        *
5* Copyright (c) 2011, WIDE Project and NICT                                                              *
6* All rights reserved.                                                                                   *
7*                                                                                                        *
8* Redistribution and use of this software in source and binary forms, with or without modification, are  *
9* permitted provided that the following conditions are met:                                              *
10*                                                                                                        *
11* * Redistributions of source code must retain the above                                                 *
12*   copyright notice, this list of conditions and the                                                    *
13*   following disclaimer.                                                                                *
14*                                                                                                        *
15* * Redistributions in binary form must reproduce the above                                              *
16*   copyright notice, this list of conditions and the                                                    *
17*   following disclaimer in the documentation and/or other                                               *
18*   materials provided with the distribution.                                                            *
19*                                                                                                        *
20* * Neither the name of the WIDE Project or NICT nor the                                                 *
21*   names of its contributors may be used to endorse or                                                  *
22*   promote products derived from this software without                                                  *
23*   specific prior written permission of WIDE Project and                                                *
24*   NICT.                                                                                                *
25*                                                                                                        *
26* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED *
27* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
28* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR *
29* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT     *
30* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS    *
31* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *
32* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY S_OUT OF THE USE OF THIS SOFTWARE, EVEN IF   *
33* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                                                             *
34*********************************************************************************************************/
35
36/* This file contains the definitions of functions and types used by the libfreeDiameter library.
37 *
38 * This library is meant to be used by both the freeDiameter daemon and its extensions.
39 * It provides the tools to manipulate Diameter messages and related data.
40 * This file should always be included as #include <freeDiameter/libfreeDiameter.h>
41 *
42 * If any change is made to this file, you must increment the FD_PROJECT_VERSION_API version.
43 *
44 * The file contains the following parts:
45 *      DEBUG
46 *      MACROS
47 *      OCTET STRINGS
48 *      THREADS
49 *      LISTS
50 *      DICTIONARY
51 *      SESSIONS
52 *      MESSAGES
53 *      DISPATCH
54 *      QUEUES
55 */
56
57#ifndef _LIBFDPROTO_H
58#define _LIBFDPROTO_H
59
60#ifndef FD_IS_CONFIG
61#error "You must include 'freeDiameter-host.h' before this file."
62#endif /* FD_IS_CONFIG */
63
64#include <pthread.h>
65#include <sched.h>
66#include <string.h>
67#include <assert.h>
68#include <errno.h>
69#include <netinet/in.h>
70#include <arpa/inet.h>
71#include <sys/socket.h>
72#include <netdb.h>
73#include <stdio.h>
74#include <stdlib.h>
75#include <unistd.h>
76
77#ifdef DEBUG
78#include <libgen.h>     /* for basename if --dbg_file is specified */
79#endif /* DEBUG */
80
81/*============================================================*/
82/*                          INIT                              */
83/*============================================================*/
84
85/* This function must be called first, before any call to another library function */
86int fd_libproto_init(void); /* note if you are using libfdcore, it handles this already */
87
88/* Call this one when the application terminates, to destroy internal threads */
89void fd_libproto_fini(void);
90
91
92/*============================================================*/
93/*                          DEBUG                             */
94/*============================================================*/
95
96
97/*
98 * FUNCTION:    fd_log_debug_fstr
99 * MACRO:       fd_log_debug
100 *
101 * PARAMETERS:
102 *  fstr        : Stream where the text will be sent (default: stdout)
103 *  format      : Same format string as in the printf function
104 *  ...         : Same list as printf
105 *
106 * DESCRIPTION:
107 *  Log internal information for use of developpers only.
108 * The format and arguments may contain UTF-8 encoded data. The
109 * output medium (file or console) is expected to support this encoding.
110 *
111 * This function assumes that a global mutex called "fd_log_lock" exists
112 * in the address space of the current process.
113 *
114 * RETURN VALUE:
115 *  None.
116 */
117void fd_log_debug_fstr ( FILE * fstr, const char * format, ... );
118#define fd_log_debug(format,args...) fd_log_debug_fstr(NULL, format, ## args)
119
120extern pthread_mutex_t  fd_log_lock;
121extern char * fd_debug_one_function;
122extern char * fd_debug_one_file;
123
124/*
125 * FUNCTION:    fd_log_threadname
126 *
127 * PARAMETERS:
128 *  name        : \0-terminated string containing a name to identify the current thread.
129 *
130 * DESCRIPTION:
131 *  Name the current thread, useful for debugging multi-threaded problems.
132 *
133 * This function assumes that a global thread-specific key called "fd_log_thname" exists
134 * in the address space of the current process.
135 *
136 * RETURN VALUE:
137 *  None.
138 */
139void fd_log_threadname ( char * name );
140extern pthread_key_t    fd_log_thname;
141
142/*
143 * FUNCTION:    fd_log_time
144 *
145 * PARAMETERS:
146 *  ts          : The timestamp to log, or NULL for "now"
147 *  buf         : An array where the time must be stored
148 *  len         : size of the buffer
149 *
150 * DESCRIPTION:
151 *  Writes the timestamp (in human readable format) in a buffer.
152 *
153 * RETURN VALUE:
154 *  pointer to buf.
155 */
156char * fd_log_time ( struct timespec * ts, char * buf, size_t len );
157
158
159/*============================================================*/
160/*                    DEBUG MACROS                            */
161/*============================================================*/
162
163#ifndef ASSERT
164#define ASSERT(x) assert(x)
165#endif /* ASSERT */
166
167/* levels definitions */
168#define NONE 0  /* Display no debug message */
169#define INFO 1  /* Display errors only */
170#define FULL 2  /* Display additional information to follow code execution */
171#define ANNOYING 4 /* Very verbose, for example in loops */
172#define FCTS 6  /* Display entry parameters of most functions */
173#define CALL 9  /* Display calls to most functions (with CHECK macros) */
174
175/* Increment the debug level for a file at compilation time by defining -DTRACE_LEVEL=FULL for example. */
176#ifndef TRACE_LEVEL
177#define TRACE_LEVEL NONE
178#endif /* TRACE_LEVEL */
179
180/* The level of the file being compiled. */
181static int local_debug_level = TRACE_LEVEL;
182
183/* A global level, changed by configuration or cmd line for example. Default is INFO (in libfdproto/log.c). */
184extern int fd_g_debug_lvl;
185
186/* Some portability code to get nice function name in __PRETTY_FUNCTION__ */
187#if __STDC_VERSION__ < 199901L
188# if __GNUC__ >= 2
189#  define __func__ __FUNCTION__
190# else /* __GNUC__ >= 2 */
191#  define __func__ "<unknown>"
192# endif /* __GNUC__ >= 2 */
193#endif /* __STDC_VERSION__ < 199901L */
194#ifndef __PRETTY_FUNCTION__
195#define __PRETTY_FUNCTION__ __func__
196#endif /* __PRETTY_FUNCTION__ */
197
198/* A version of __FILE__ without the full path */
199static char * file_bname = NULL;
200#define __STRIPPED_FILE__       (file_bname ?: (file_bname = basename((char *)__FILE__)))
201
202
203/* Boolean for tracing at a certain level */
204#ifdef DEBUG
205#define TRACE_BOOL(_level_) ( ((_level_) <= local_debug_level + fd_g_debug_lvl)                                         \
206                                || (fd_debug_one_function && !strcmp(fd_debug_one_function, __PRETTY_FUNCTION__))       \
207                                || (fd_debug_one_file && !strcmp(fd_debug_one_file, __STRIPPED_FILE__) ) )
208#else /* DEBUG */
209#define TRACE_BOOL(_level_) ((_level_) <= local_debug_level + fd_g_debug_lvl)
210#endif /* DEBUG */
211
212
213/*************
214 The general debug macro, each call results in two lines of debug messages (change the macro for more compact output)
215 *************/
216#ifdef DEBUG
217/* In DEBUG mode, we add (a lot of) meta-information along each trace. This makes multi-threading problems easier to debug. */
218#define TRACE_DEBUG(level,format,args... ) {                                                                                    \
219        if ( TRACE_BOOL(level) ) {                                                                                              \
220                char __buf[25];                                                                                                 \
221                const char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                 \
222                fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
223                          "\t%s|%*s" format "\n",                                                                               \
224                                        __thn, fd_log_time(NULL, __buf, sizeof(__buf)), __PRETTY_FUNCTION__, __FILE__, __LINE__,\
225                                        (level < FULL)?"@":" ",level, "", ## args);                                             \
226        }                                                                                                                       \
227}
228#else /* DEBUG */
229/* Do not print thread, function, ... only the message itself in this case, unless the debug level is set > FULL. */
230#define TRACE_DEBUG(level,format,args... ) {                                                                                            \
231        if ( TRACE_BOOL(level) ) {                                                                                                      \
232                if (fd_g_debug_lvl > FULL) {                                                                                            \
233                        char __buf[25];                                                                                                 \
234                        const char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                 \
235                        fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
236                                  "\t%s|%*s" format "\n",                                                                               \
237                                                __thn, fd_log_time(NULL, __buf, sizeof(__buf)), __PRETTY_FUNCTION__, __FILE__, __LINE__,\
238                                                (level < FULL)?"@":" ",level, "", ## args);                                             \
239                } else {                                                                                                                \
240                        fd_log_debug(format "\n", ## args);                                                                             \
241                }                                                                                                                       \
242        }                                                                                                                               \
243}
244#endif /* DEBUG */
245
246/*************
247 Derivatives from this macro
248 ************/
249/* Helper for function entry -- for very detailed trace of the execution */
250#define TRACE_ENTRY(_format,_args... ) \
251        TRACE_DEBUG(FCTS, "[enter] %s(" _format ") {" #_args "}", __PRETTY_FUNCTION__, ##_args );
252
253/* Helper for debugging by adding traces -- for debuging a specific location of the code */
254#define TRACE_HERE()    \
255        TRACE_DEBUG(NONE, " -- debug checkpoint %d -- ", fd_breakhere());
256int fd_breakhere(void);
257
258/* Helper for tracing the CHECK_* macros bellow -- very very verbose code execution! */
259#define TRACE_DEBUG_ALL( str )  \
260        TRACE_DEBUG(CALL, str );
261
262/* For development only, to keep track of TODO locations in the code */
263#ifndef ERRORS_ON_TODO
264#define TODO( _msg, _args... ) \
265        TRACE_DEBUG(NONE, "TODO: " _msg , ##_args);
266#else /* ERRORS_ON_TODO */
267#define TODO( _msg, _args... ) \
268        "TODO" = _msg ## _args; /* just a stupid compilation error to spot the todo */
269#endif /* ERRORS_ON_TODO */
270
271/* Trace a binary buffer content */
272#define TRACE_DEBUG_BUFFER(level, prefix, buf, bufsz, suffix ) {                                                                \
273        if ( TRACE_BOOL(level) ) {                                                                                              \
274                char __ts[25];                                                                                                  \
275                int __i;                                                                                                        \
276                size_t __sz = (size_t)(bufsz);                                                                                  \
277                uint8_t * __buf = (uint8_t *)(buf);                                                                             \
278                char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                       \
279                fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
280                          "\t%s|%*s" prefix ,                                                                                   \
281                                        __thn, fd_log_time(NULL, __ts, sizeof(__ts)), __PRETTY_FUNCTION__, __FILE__, __LINE__,  \
282                                        (level < FULL)?"@":" ",level, "");                                                      \
283                for (__i = 0; __i < __sz; __i++) {                                                                              \
284                        fd_log_debug("%02.2hhx", __buf[__i]);                                                                   \
285                }                                                                                                               \
286                fd_log_debug(suffix "\n");                                                                                      \
287        }                                                                                                                       \
288}
289
290/* Some aliases to socket addresses structures */
291#define sSS     struct sockaddr_storage
292#define sSA     struct sockaddr
293#define sSA4    struct sockaddr_in
294#define sSA6    struct sockaddr_in6
295
296/* The sockaddr length of a sSS structure */
297#define sSAlen( _sa_ )  \
298        ( (socklen_t) ( (((sSA *)_sa_)->sa_family == AF_INET) ? (sizeof(sSA4)) :                \
299                                ((((sSA *)_sa_)->sa_family == AF_INET6) ? (sizeof(sSA6)) :      \
300                                        0 ) ) )
301
302/* Dump one sockaddr Node information */
303#define sSA_DUMP_NODE( sa, flag ) {                             \
304        sSA * __sa = (sSA *)(sa);                               \
305        char __addrbuf[INET6_ADDRSTRLEN];                       \
306        if (__sa) {                                             \
307          int __rc = getnameinfo(__sa,                          \
308                        sSAlen(__sa),                           \
309                        __addrbuf,                              \
310                        sizeof(__addrbuf),                      \
311                        NULL,                                   \
312                        0,                                      \
313                        flag);                                  \
314          if (__rc)                                             \
315                fd_log_debug("%s", (char *)gai_strerror(__rc)); \
316          else                                                  \
317                fd_log_debug("%s", &__addrbuf[0]);              \
318        } else {                                                \
319                fd_log_debug("(NULL / ANY)");                   \
320        }                                                       \
321}
322/* Same but with the port (service) also */
323#define sSA_DUMP_NODE_SERV( sa, flag ) {                                \
324        sSA * __sa = (sSA *)(sa);                                       \
325        char __addrbuf[INET6_ADDRSTRLEN];                               \
326        char __servbuf[32];                                             \
327        if (__sa) {                                                     \
328          int __rc = getnameinfo(__sa,                                  \
329                        sSAlen(__sa),                                   \
330                        __addrbuf,                                      \
331                        sizeof(__addrbuf),                              \
332                        __servbuf,                                      \
333                        sizeof(__servbuf),                              \
334                        flag);                                          \
335          if (__rc)                                                     \
336                fd_log_debug("%s", (char *)gai_strerror(__rc));         \
337          else                                                          \
338                fd_log_debug("[%s]:%s", &__addrbuf[0],&__servbuf[0]);   \
339        } else {                                                        \
340                fd_log_debug("(NULL / ANY)");                           \
341        }                                                               \
342}
343
344/* Inside a debug trace */
345#define TRACE_DEBUG_sSA(level, prefix, sa, flags, suffix ) {                                                                            \
346        if ( TRACE_BOOL(level) ) {                                                                                              \
347                char __buf[25];                                                                                                 \
348                char * __thn = ((char *)pthread_getspecific(fd_log_thname) ?: "unnamed");                                       \
349                fd_log_debug("\t | tid:%-20s\t%s\tin %s@%s:%d\n"                                                                \
350                          "\t%s|%*s" prefix ,                                                                                   \
351                                        __thn, fd_log_time(NULL, __buf, sizeof(__buf)), __PRETTY_FUNCTION__, __FILE__, __LINE__,\
352                                        (level < FULL)?"@":" ",level, "");                                                      \
353                sSA_DUMP_NODE_SERV( sa, flags );                                                                                \
354                fd_log_debug(suffix "\n");                                                                                      \
355        }                                                                                                                       \
356}
357
358/* Report an error */
359#define TRACE_DEBUG_ERROR(format,args... ) \
360        TRACE_DEBUG(INFO, format, ##args)
361
362/******************
363 Optimized code: remove all debugging code
364 **/
365#ifdef STRIP_DEBUG_CODE
366#undef TRACE_DEBUG
367#undef TRACE_BOOL
368#undef TRACE_DEBUG_sSA
369#undef TRACE_DEBUG_BUFFER
370#undef TRACE_DEBUG_ERROR
371#define TRACE_DEBUG(level,format,args... )
372#define TRACE_BOOL(_level_) (0)
373#define TRACE_DEBUG_BUFFER(level, prefix, buf, bufsz, suffix )
374#define TRACE_DEBUG_sSA(level, prefix, sa, flags, suffix )
375#define TRACE_DEBUG_ERROR(format,args... ) {    \
376        fd_log_debug(format "\n", ## args);     \
377}
378#endif /* STRIP_DEBUG_CODE */
379
380
381/*============================================================*/
382/*                  ERROR CHECKING MACRO                      */
383/*============================================================*/
384
385/* Macros to check a return value and branch out in case of error.
386 * These macro should be used only when errors are improbable, not for expected errors.
387 */
388
389/* Check the return value of a system function and execute fallback in case of error */
390#define CHECK_SYS_DO( __call__, __fallback__  ) {                                       \
391        int __ret__;                                                                    \
392        TRACE_DEBUG_ALL( "Check SYS: " #__call__ );                                     \
393        __ret__ = (__call__);                                                           \
394        if (__ret__ < 0) {                                                              \
395                int __err__ = errno;    /* We may handle EINTR here */                  \
396                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "' :\t%s", strerror(__err__));\
397                __fallback__;                                                           \
398        }                                                                               \
399}
400/* Check the return value of a system function, return error code on error */
401#define CHECK_SYS( __call__  ) {                                                        \
402        int __ret__;                                                                    \
403        TRACE_DEBUG_ALL( "Check SYS: " #__call__ );                                     \
404        __ret__ = (__call__);                                                           \
405        if (__ret__ < 0) {                                                              \
406                int __err__ = errno;    /* We may handle EINTR here */                  \
407                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "' :\t%s", strerror(__err__));\
408                return __err__;                                                         \
409        }                                                                               \
410}
411
412/* Check the return value of a POSIX function and execute fallback in case of error or special value */
413#define CHECK_POSIX_DO2( __call__, __speval__, __fallback1__, __fallback2__ ) {                 \
414        int __ret__;                                                                            \
415        TRACE_DEBUG_ALL( "Check POSIX: " #__call__ );                                           \
416        __ret__ = (__call__);                                                                   \
417        if (__ret__ != 0) {                                                                     \
418                if (__ret__ == (__speval__)) {                                                  \
419                        __fallback1__;                                                          \
420                } else {                                                                        \
421                        TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "':\t%s", strerror(__ret__)); \
422                        __fallback2__;                                                          \
423                }                                                                               \
424        }                                                                                       \
425}
426
427/* Check the return value of a POSIX function and execute fallback in case of error */
428#define CHECK_POSIX_DO( __call__, __fallback__ )                                        \
429        CHECK_POSIX_DO2( (__call__), 0, , __fallback__ );
430
431/* Check the return value of a POSIX function and return it if error */
432#define CHECK_POSIX( __call__ ) {                                                       \
433        int __v__;                                                                      \
434        CHECK_POSIX_DO( __v__ = (__call__), return __v__ );                             \
435}
436
437/* Check that a memory allocator did not return NULL, otherwise log an error and execute fallback */
438#define CHECK_MALLOC_DO( __call__, __fallback__ ) {                                     \
439        void *  __ret__;                                                                \
440        TRACE_DEBUG_ALL( "Check MALLOC: " #__call__ );                                  \
441        __ret__ = (void *)( __call__ );                                                 \
442        if (__ret__ == NULL) {                                                          \
443                int __err__ = errno;                                                    \
444                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "':\t%s", strerror(__err__)); \
445                __fallback__;                                                           \
446        }                                                                               \
447}
448
449/* Check that a memory allocator did not return NULL, otherwise return ENOMEM */
450#define CHECK_MALLOC( __call__ )                                                        \
451        CHECK_MALLOC_DO( __call__, return ENOMEM );
452
453
454/* Check parameters at function entry, execute fallback on error */
455#define CHECK_PARAMS_DO( __bool__, __fallback__ )                                               \
456        TRACE_DEBUG_ALL( "Check PARAMS: " #__bool__ );                                          \
457        if ( ! (__bool__) ) {                                                                   \
458                TRACE_DEBUG_ERROR("Warning: Invalid parameter received in '" #__bool__ "'");    \
459                __fallback__;                                                                   \
460        }
461/* Check parameters at function entry, return EINVAL if the boolean is false (similar to assert) */
462#define CHECK_PARAMS( __bool__ )                                                        \
463        CHECK_PARAMS_DO( __bool__, return EINVAL );
464
465/* Check the return value of an internal function, log and propagate */
466#define CHECK_FCT_DO( __call__, __fallback__ ) {                                        \
467        int __ret__;                                                                    \
468        TRACE_DEBUG_ALL( "Check FCT: " #__call__ );                                     \
469        __ret__ = (__call__);                                                           \
470        if (__ret__ != 0) {                                                             \
471                TRACE_DEBUG_ERROR("ERROR: in '" #__call__ "':\t%s", strerror(__ret__)); \
472                __fallback__;                                                           \
473        }                                                                               \
474}
475/* Check the return value of a function call, return any error code */
476#define CHECK_FCT( __call__ ) {                                                         \
477        int __v__;                                                                      \
478        CHECK_FCT_DO( __v__ = (__call__), return __v__ );                               \
479}
480
481
482
483/*============================================================*/
484/*                  OTHER MACROS                              */
485/*============================================================*/
486
487
488/* helper macros (pre-processor hacks to allow macro arguments) */
489#define __tostr( arg )  #arg
490#define _stringize( arg ) __tostr( arg )
491#define __agr( arg1, arg2 ) arg1 ## arg2
492#define _aggregate( arg1, arg2 ) __agr( arg1, arg2 )
493
494
495/* A l4 protocol name (TCP / SCTP) */
496#ifdef DISABLE_SCTP
497#define IPPROTO_NAME( _proto )                                  \
498        (((_proto) == IPPROTO_TCP) ? "TCP" :                    \
499                        "Unknown")
500#else /* DISABLE_SCTP */
501#define IPPROTO_NAME( _proto )                                  \
502        ( ((_proto) == IPPROTO_TCP) ? "TCP" :                   \
503                (((_proto) == IPPROTO_SCTP) ? "SCTP" :          \
504                        "Unknown"))
505#endif /* DISABLE_SCTP */
506
507/* Define the value of IP loopback address */
508#ifndef INADDR_LOOPBACK
509#define INADDR_LOOPBACK inet_addr("127.0.0.1")
510#endif /* INADDR_LOOPBACK */
511
512#ifndef INADDR_BROADCAST
513#define INADDR_BROADCAST        ((in_addr_t) 0xffffffff)
514#endif /* INADDR_BROADCAST */
515
516/* An IP equivalent to IN6_IS_ADDR_LOOPBACK */
517#ifndef IN_IS_ADDR_LOOPBACK
518#define IN_IS_ADDR_LOOPBACK(a) \
519  ((((long int) (a)->s_addr) & ntohl(0xff000000)) == ntohl(0x7f000000))
520#endif /* IN_IS_ADDR_LOOPBACK */
521
522/* An IP equivalent to IN6_IS_ADDR_UNSPECIFIED */
523#ifndef IN_IS_ADDR_UNSPECIFIED
524#define IN_IS_ADDR_UNSPECIFIED(a) \
525  (((long int) (a)->s_addr) == 0x00000000)
526#endif /* IN_IS_ADDR_UNSPECIFIED */
527
528/* create a V4MAPPED address */
529#define IN6_ADDR_V4MAP( a6, a4 ) {                      \
530        ((uint32_t *)(a6))[0] = 0;                      \
531        ((uint32_t *)(a6))[1] = 0;                      \
532        ((uint32_t *)(a6))[2] = htonl(0xffff);          \
533        ((uint32_t *)(a6))[3] = (uint32_t)(a4);         \
534}
535
536/* Retrieve a v4 value from V4MAPPED address ( takes a s6_addr as param) */
537#define IN6_ADDR_V4UNMAP( a6 )                          \
538        (((in_addr_t *)(a6))[3])
539
540
541/* We provide macros to convert 64 bit values to and from network byte-order, on systems where it is not already provided. */
542#ifndef HAVE_NTOHLL     /* Defined by the cmake step, if the ntohll symbol is defined on the system */
543# if HOST_BIG_ENDIAN
544    /* In big-endian systems, we don't have to change the values, since the order is the same as network */
545#   define ntohll(x) (x)
546#   define htonll(x) (x)
547# else /* HOST_BIG_ENDIAN */
548    /* For these systems, we must reverse the bytes. Use ntohl and htonl on sub-32 blocs, and inverse these blocs. */
549#   define ntohll(x) (typeof (x))( (((uint64_t)ntohl( (uint32_t)(x))) << 32 ) | ((uint64_t) ntohl( ((uint64_t)(x)) >> 32 )))
550#   define htonll(x) (typeof (x))( (((uint64_t)htonl( (uint32_t)(x))) << 32 ) | ((uint64_t) htonl( ((uint64_t)(x)) >> 32 )))
551# endif /* HOST_BIG_ENDIAN */
552#endif /* HAVE_NTOHLL */
553
554/* This macro will give the next multiple of 4 for an integer (used for padding sizes of AVP). */
555#define PAD4(_x) ((_x) + ( (4 - (_x)) & 3 ) )
556
557/* Useful to display any value as (safe) ASCII (will garbage UTF-8 output...) */
558#define ASCII(_c) ( ((_c < 32) || (_c > 127)) ? ( _c ? '?' : ' ' ) : _c )
559
560/* Compare timespec structures */
561#define TS_IS_INFERIOR( ts1, ts2 )              \
562        (    ((ts1)->tv_sec  < (ts2)->tv_sec )  \
563          || (((ts1)->tv_sec  == (ts2)->tv_sec ) && ((ts1)->tv_nsec < (ts2)->tv_nsec) ))
564
565/* This gives a good size for buffered reads */
566#ifndef BUFSIZ
567#define BUFSIZ 96
568#endif /* BUFSIZ */
569
570/* This gives the length of a const string */
571#define CONSTSTRLEN( str ) (sizeof(str) - 1)
572
573
574/*============================================================*/
575/*                         BINARY STRINGS                     */
576/*============================================================*/
577
578/* Compute a hash value of a binary string.
579The hash must remain local to this machine, there is no guarantee that same input
580will give same output on a different system (endianness) */
581uint32_t fd_os_hash ( uint8_t * string, size_t len );
582
583/* This type used for binary strings that contain no \0 except as their last character.
584It means some string operations can be used on it. */
585typedef uint8_t * os0_t;
586
587/* Same as strdup but for os0_t strings */
588os0_t os0dup_int(os0_t s, size_t l);
589#define os0dup( _s, _l)  (void *)os0dup_int((os0_t)(_s), _l)
590
591/* Check that an octet string value can be used as os0_t */
592static __inline__ int fd_os_is_valid_os0(uint8_t * os, size_t oslen) {
593        /* The only situation where it is not valid is when it contains a \0 inside the octet string */
594        return (memchr(os, '\0', oslen) == NULL);
595}
596
597/* The following type denotes a verified DiameterIdentity value (that contains only pure letters, digits, hyphen, dot) */
598typedef char * DiamId_t;
599
600/* Maximum length of a hostname we accept */
601#ifndef HOST_NAME_MAX
602#define HOST_NAME_MAX 512
603#endif /* HOST_NAME_MAX */
604
605/* Check if a binary string contains a valid Diameter Identity value.
606  rfc3588 states explicitely that such a Diameter Identity consists only of ASCII characters. */
607int fd_os_is_valid_DiameterIdentity(uint8_t * os, size_t ossz);
608
609/* The following function validates a string as a Diameter Identity or applies the IDNA transformation on it
610 if *inoutsz is != 0 on entry, *id may not be \0-terminated.
611 memory has the following meaning: 0: *id can be realloc'd. 1: *id must be malloc'd on output (was static)
612*/
613int fd_os_validate_DiameterIdentity(char ** id, size_t * inoutsz, int memory);
614
615/* Create an order relationship for binary strings (not needed to be \0 terminated).
616   It does NOT mimic strings relationships so that it is more efficient. It is case sensitive.
617   (the strings are actually first ordered by their lengh, then by their bytes contents)
618   returns: -1 if os1 < os2;  +1 if os1 > os2;  0 if they are equal */
619int fd_os_cmp_int(os0_t os1, size_t os1sz, os0_t os2, size_t os2sz);
620#define fd_os_cmp(_o1, _l1, _o2, _l2)  fd_os_cmp_int((os0_t)(_o1), _l1, (os0_t)(_o2), _l2)
621
622/* A roughly case-insensitive variant, which actually only compares ASCII chars (0-127) in a case-insentitive maneer
623  -- this should be OK with (old) DNS names. Not sure how it works with IDN...
624  -- it also clearly does not support locales where a lowercase letter uses more space than upper case, such as ß -> ss
625 It is slower than fd_os_cmp...
626 This function should give the same order as fd_os_cmp, except when it finds 2 strings to be equal.
627 Note that the result is NOT the same as strcasecmp !!!
628 */
629int fd_os_almostcasecmp_int(uint8_t * os1, size_t os1sz, uint8_t * os2, size_t os2sz);
630#define fd_os_almostcasecmp(_o1, _l1, _o2, _l2)  fd_os_almostcasecmp_int((os0_t)(_o1), _l1, (os0_t)(_o2), _l2)
631
632/* Analyze a DiameterURI and return its components.
633  Return EINVAL if the URI is not valid.
634  *diamid is malloc'd on function return and must be freed (it is processed by fd_os_validate_DiameterIdentity).
635  *secure is 0 (no security) or 1 (security enabled) on return.
636  *port is 0 (default) or a value in host byte order on return.
637  *transport is 0 (default) or IPPROTO_* on return.
638  *proto is 0 (default) or 'd' (diameter), 'r' (radius), or 't' (tacacs+) on return.
639  */
640int fd_os_parse_DiameterURI(uint8_t * uri, size_t urisz, DiamId_t * diamid, size_t * diamidlen, int * secure, uint16_t * port, int * transport, char *proto);
641
642/*============================================================*/
643/*                          THREADS                           */
644/*============================================================*/
645
646/* Terminate a thread */
647static __inline__ int fd_thr_term(pthread_t * th)
648{
649        void * th_ret = NULL;
650       
651        CHECK_PARAMS(th);
652       
653        /* Test if it was already terminated */
654        if (*th == (pthread_t)NULL)
655                return 0;
656       
657        /* Cancel the thread if it is still running - ignore error if it was already terminated */
658        (void) pthread_cancel(*th);
659       
660        /* Then join the thread */
661        CHECK_POSIX( pthread_join(*th, &th_ret) );
662       
663        if (th_ret == PTHREAD_CANCELED) {
664                TRACE_DEBUG(ANNOYING, "The thread %p was canceled", *th);
665        } else {
666                TRACE_DEBUG(CALL, "The thread %p returned %x", *th, th_ret);
667        }
668       
669        /* Clean the location */
670        *th = (pthread_t)NULL;
671       
672        return 0;
673}
674
675
676/*************
677 Cancelation cleanup handlers for common objects
678 *************/
679static __inline__ void fd_cleanup_mutex( void * mutex )
680{
681        CHECK_POSIX_DO( pthread_mutex_unlock((pthread_mutex_t *)mutex), /* */);
682}
683               
684static __inline__ void fd_cleanup_rwlock( void * rwlock )
685{
686        CHECK_POSIX_DO( pthread_rwlock_unlock((pthread_rwlock_t *)rwlock), /* */);
687}
688
689static __inline__ void fd_cleanup_buffer( void * buffer )
690{
691        free(buffer);
692}
693static __inline__ void fd_cleanup_socket(void * sockptr)
694{
695        if (sockptr && (*(int *)sockptr > 0)) {
696                CHECK_SYS_DO( close(*(int *)sockptr), /* ignore */ );
697                *(int *)sockptr = -1;
698        }
699}
700
701
702/*============================================================*/
703/*                          LISTS                             */
704/*============================================================*/
705
706/* The following structure represents a chained list element  */
707struct fd_list {
708        struct fd_list  *next; /* next element in the list */
709        struct fd_list  *prev; /* previous element in the list */
710        struct fd_list  *head; /* head of the list */
711        void            *o;    /* additional pointer, used for any purpose (ex: start of the parent object) */
712};
713
714/* Initialize a list element */
715#define FD_LIST_INITIALIZER( _list_name ) \
716        { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = NULL }
717#define FD_LIST_INITIALIZER_O( _list_name, _obj ) \
718        { .next = & _list_name, .prev = & _list_name, .head = & _list_name, .o = _obj }
719void fd_list_init ( struct fd_list * list, void * obj );
720
721/* Return boolean, true if the list is empty */
722#define FD_IS_LIST_EMPTY( _list ) ((((struct fd_list *)(_list))->head == (_list)) && (((struct fd_list *)(_list))->next == (_list)))
723
724/* Insert an item in a list at known position */
725void fd_list_insert_after  ( struct fd_list * ref, struct fd_list * item );
726void fd_list_insert_before ( struct fd_list * ref, struct fd_list * item );
727
728/* Move all elements from a list at the end of another */
729void fd_list_move_end(struct fd_list * ref, struct fd_list * senti);
730
731/* Insert an item in an ordered list -- ordering function must be provided. If duplicate object found, EEXIST and it is returned in ref_duplicate */
732int fd_list_insert_ordered( struct fd_list * head, struct fd_list * item, int (*cmp_fct)(void *, void *), void ** ref_duplicate);
733
734/* Unlink an item from a list */
735void fd_list_unlink ( struct fd_list * item );
736
737
738
739
740/*============================================================*/
741/*                        DICTIONARY                          */
742/*============================================================*/
743
744/* Structure that contains the complete dictionary definitions */
745struct dictionary;
746
747/* Structure that contains a dictionary object */
748struct dict_object;
749
750/* Types of object in the dictionary. */
751enum dict_object_type {
752        DICT_VENDOR     = 1,    /* Vendor */
753        DICT_APPLICATION,       /* Diameter Application */
754        DICT_TYPE,              /* AVP data type */
755        DICT_ENUMVAL,           /* Named constant (value of an enumerated AVP type) */
756        DICT_AVP,               /* AVP */
757        DICT_COMMAND,           /* Diameter Command */
758        DICT_RULE               /* a Rule for AVP in command or grouped AVP */
759#define DICT_TYPE_MAX   DICT_RULE
760};
761       
762/* Initialize a dictionary */
763int fd_dict_init(struct dictionary ** dict);
764/* Destroy a dictionary */
765int fd_dict_fini(struct dictionary ** dict);
766
767/*
768 * FUNCTION:    fd_dict_new
769 *
770 * PARAMETERS:
771 *  dict        : Pointer to the dictionnary where the object is created
772 *  type        : What kind of object must be created
773 *  data        : pointer to the data for the object.
774 *               type parameter is used to determine the type of data (see bellow for detail).
775 *  parent      : a reference to a parent object, if needed.
776 *  ref         : upon successful creation, reference to new object is stored here if !null.
777 *
778 * DESCRIPTION:
779 *  Create a new object in the dictionary.
780 *  See following object sections in this header file for more information on data and parent parameters format.
781 *
782 * RETURN VALUE:
783 *  0           : The object is created in the dictionary.
784 *  EINVAL      : A parameter is invalid.
785 *  EEXIST      : This object is already defined in the dictionary (with conflicting data).
786 *                If "ref" is not NULL, it points to the existing element on return.
787 *  (other standard errors may be returned, too, with their standard meaning. Example:
788 *    ENOMEM    : Memory allocation for the new object element failed.)
789 */
790int fd_dict_new ( struct dictionary * dict, enum dict_object_type type, void * data, struct dict_object * parent, struct dict_object ** ref );
791
792/*
793 * FUNCTION:    fd_dict_search
794 *
795 * PARAMETERS:
796 *  dict        : Pointer to the dictionnary where the object is searched
797 *  type        : type of object that is being searched
798 *  criteria    : how the object must be searched. See object-related sections bellow for more information.
799 *  what        : depending on criteria, the data that must be searched.
800 *  result      : On successful return, pointer to the object is stored here.
801 *  retval      : this value is returned if the object is not found and result is not NULL.
802 *
803 * DESCRIPTION:
804 *   Perform a search in the dictionary.
805 *   See the object-specific sections bellow to find how to look for each objects.
806 *   If the "result" parameter is NULL, the function is used to check if an object is in the dictionary.
807 *   Otherwise, a reference to the object is stored in result if found.
808 *   If result is not NULL and the object is not found, retval is returned (should be 0 or ENOENT usually)
809 *
810 * RETURN VALUE:
811 *  0           : The object has been found in the dictionary, or *result is NULL.
812 *  EINVAL      : A parameter is invalid.
813 *  ENOENT      : No matching object has been found, and result was NULL.
814 */
815int fd_dict_search ( struct dictionary * dict, enum dict_object_type type, int criteria, void * what, struct dict_object ** result, int retval );
816
817/* Special case: get the generic error command object */
818int fd_dict_get_error_cmd(struct dictionary * dict, struct dict_object ** obj);
819
820/*
821 * FUNCTION:    fd_dict_getval
822 *
823 * PARAMETERS:
824 *  object      : Pointer to a dictionary object.
825 *  data        : pointer to a structure to hold the data for the object.
826 *                The type is the same as "data" parameter in fd_dict_new function.
827 *
828 * DESCRIPTION:
829 *  Retrieve content of a dictionary object.
830 *  See following object sections in this header file for more information on data and parent parameters format.
831 *
832 * RETURN VALUE:
833 *  0           : The content of the object has been retrieved.
834 *  EINVAL      : A parameter is invalid.
835 */
836int fd_dict_getval ( struct dict_object * object, void * val);
837int fd_dict_gettype ( struct dict_object * object, enum dict_object_type * type);
838int fd_dict_getdict ( struct dict_object * object, struct dictionary ** dict);
839
840/* Debug functions */
841void fd_dict_dump_object(struct dict_object * obj);
842void fd_dict_dump(struct dictionary * dict);
843
844/*
845 ***************************************************************************
846 *
847 * Vendor object
848 *
849 * These types are used to manage vendors in the dictionary
850 *
851 ***************************************************************************
852 */
853
854/* Type to hold a Vendor ID: "SMI Network Management Private Enterprise Codes" (RFC3232) */
855typedef uint32_t        vendor_id_t;
856
857/* Type to hold data associated to a vendor */
858struct dict_vendor_data {
859        vendor_id_t      vendor_id;     /* ID of a vendor */
860        char *           vendor_name;   /* The name of this vendor */
861};
862
863/* The criteria for searching a vendor object in the dictionary */
864enum {
865        VENDOR_BY_ID = 10,      /* "what" points to a vendor_id_t */
866        VENDOR_BY_NAME,         /* "what" points to a char * */
867        VENDOR_OF_APPLICATION   /* "what" points to a struct dict_object containing an application (see bellow) */
868};
869
870/***
871 *  API usage :
872
873Note: the value of "vendor_name" is copied when the object is created, and the string may be disposed afterwards.
874On the other side, when value is retrieved with dict_getval, the string is not copied and MUST NOT be freed. It will
875be freed automatically along with the object itself with call to dict_fini later.
876 
877- fd_dict_new:
878 The "parent" parameter is not used for vendors.
879 Sample code to create a vendor:
880 {
881         int ret;
882         struct dict_object * myvendor;
883         struct dict_vendor_data myvendordata = { 23455, "my vendor name" };  -- just an example...
884         ret = fd_dict_new ( dict, DICT_VENDOR, &myvendordata, NULL, &myvendor );
885 }
886
887- fd_dict_search:
888 Sample codes to look for a vendor object, by its id or name:
889 {
890         int ret;
891         struct dict_object * vendor_found;
892         vendor_id_t vendorid = 23455;
893         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_ID, &vendorid, &vendor_found, ENOENT);
894         - or -
895         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &vendor_found, ENOENT);
896 }
897 
898 - fd_dict_getval:
899 Sample code to retrieve the data from a vendor object:
900 {
901         int ret;
902         struct dict_object * myvendor;
903         struct dict_vendor_data myvendordata;
904         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_BY_NAME, "my vendor name", &myvendor, ENOENT);
905         ret = fd_dict_getval ( myvendor, &myvendordata );
906         printf("my vendor id: %d\n", myvendordata.vendor_id );
907 }
908                 
909*/
910               
911/* Special function: */
912uint32_t * fd_dict_get_vendorid_list(struct dictionary * dict);
913         
914/*
915 ***************************************************************************
916 *
917 * Application object
918 *
919 * These types are used to manage Diameter applications in the dictionary
920 *
921 ***************************************************************************
922 */
923
924/* Type to hold a Diameter application ID: IANA assigned value for this application. */
925typedef uint32_t        application_id_t;
926
927/* Type to hold data associated to an application */
928struct dict_application_data {
929        application_id_t         application_id;        /* ID of the application */
930        char *                   application_name;      /* The name of this application */
931};
932
933/* The criteria for searching an application object in the dictionary */
934enum {
935        APPLICATION_BY_ID = 20,         /* "what" points to a application_id_t */
936        APPLICATION_BY_NAME,            /* "what" points to a char * */
937        APPLICATION_OF_TYPE,            /* "what" points to a struct dict_object containing a type object (see bellow) */
938        APPLICATION_OF_COMMAND          /* "what" points to a struct dict_object containing a command (see bellow) */
939};
940
941/***
942 *  API usage :
943
944The "parent" parameter of dict_new may point to a vendor object to inform of what vendor defines the application.
945for standard-track applications, the "parent" parameter should be NULL.
946The vendor associated to an application is retrieved with VENDOR_OF_APPLICATION search criteria on vendors.
947
948- fd_dict_new:
949 Sample code for application creation:
950 {
951         int ret;
952         struct dict_object * vendor;
953         struct dict_object * appl;
954         struct dict_vendor_data vendor_data = {
955                 23455,
956                 "my vendor name"
957         };
958         struct dict_application_data app_data = {
959                 9789,
960                 "my vendor's application"
961         };
962       
963         ret = fd_dict_new ( dict, DICT_VENDOR, &vendor_data, NULL, &vendor );
964         ret = fd_dict_new ( dict, DICT_APPLICATION, &app_data, vendor, &appl );
965 }
966
967- fd_dict_search:
968 Sample code to retrieve the vendor of an application
969 {
970         int ret;
971         struct dict_object * vendor, * appli;
972         
973         ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
974         ret = fd_dict_search ( dict, DICT_VENDOR, VENDOR_OF_APPLICATION, appli, &vendor, ENOENT);
975 }
976 
977 - fd_dict_getval:
978 Sample code to retrieve the data from an application object:
979 {
980         int ret;
981         struct dict_object * appli;
982         struct dict_application_data appl_data;
983         ret = fd_dict_search ( dict, DICT_APPLICATION, APPLICATION_BY_NAME, "my vendor's application", &appli, ENOENT);
984         ret = fd_dict_getval ( appli, &appl_data );
985         printf("my application id: %s\n", appl_data.application_id );
986 }
987
988*/
989
990/*
991 ***************************************************************************
992 *
993 * Type object
994 *
995 * These types are used to manage AVP data types in the dictionary
996 *
997 ***************************************************************************
998 */
999
1000/* Type to store any AVP value */ 
1001union avp_value {
1002        struct {
1003                uint8_t *data;  /* bytes buffer */
1004                size_t   len;   /* length of the data buffer */
1005        }           os;         /* Storage for an octet string */
1006        int32_t     i32;        /* integer 32 */
1007        int64_t     i64;        /* integer 64 */
1008        uint32_t    u32;        /* unsigned 32 */
1009        uint64_t    u64;        /* unsigned 64 */
1010        float       f32;        /* float 32 */
1011        double      f64;        /* float 64 */
1012};
1013
1014/* These are the basic AVP types defined in RFC3588bis */
1015enum dict_avp_basetype {
1016        AVP_TYPE_GROUPED,
1017        AVP_TYPE_OCTETSTRING,
1018        AVP_TYPE_INTEGER32,
1019        AVP_TYPE_INTEGER64,
1020        AVP_TYPE_UNSIGNED32,
1021        AVP_TYPE_UNSIGNED64,
1022        AVP_TYPE_FLOAT32,
1023        AVP_TYPE_FLOAT64
1024#define AVP_TYPE_MAX AVP_TYPE_FLOAT64
1025};
1026
1027/* Callbacks that can be associated with a derived type to easily interpret the AVP value. */
1028/*
1029 * CALLBACK:    dict_avpdata_interpret
1030 *
1031 * PARAMETERS:
1032 *   val         : Pointer to the AVP value that must be interpreted.
1033 *   interpreted : The result of interpretation is stored here. The format and meaning depends on each type.
1034 *
1035 * DESCRIPTION:
1036 *   This callback can be provided with a derived type in order to facilitate the interpretation of formated data.
1037 *  For example, when an AVP of type "Address" is received, it can be used to convert the octetstring into a struct sockaddr.
1038 *  This callback is not called directly, but through the message's API msg_avp_value_interpret function.
1039 *
1040 * RETURN VALUE:
1041 *  0           : Operation complete.
1042 *  !0          : An error occurred, the error code is returned.
1043 */
1044typedef int (*dict_avpdata_interpret) (union avp_value * value, void * interpreted);
1045/*
1046 * CALLBACK:    dict_avpdata_encode
1047 *
1048 * PARAMETERS:
1049 *   data       : The formated data that must be stored in the AVP value.
1050 *   val        : Pointer to the AVP value storage area where the data must be stored.
1051 *
1052 * DESCRIPTION:
1053 *   This callback can be provided with a derived type in order to facilitate the encoding of formated data.
1054 *  For example, it can be used to convert a struct sockaddr in an AVP value of type Address.
1055 *  This callback is not called directly, but through the message's API msg_avp_value_encode function.
1056 *  If the callback is defined for an OctetString based type, the created string must be malloc'd. free will be called
1057 *  automatically later.
1058 *
1059 * RETURN VALUE:
1060 *  0           : Operation complete.
1061 *  !0          : An error occurred, the error code is returned.
1062 */
1063typedef int (*dict_avpdata_encode) (void * data, union avp_value * val);
1064
1065
1066/* Type to hold data associated to a derived AVP data type */
1067struct dict_type_data {
1068        enum dict_avp_basetype   type_base;     /* How the data of such AVP must be interpreted */
1069        char *                   type_name;     /* The name of this type */
1070        dict_avpdata_interpret   type_interpret;/* cb to convert the AVP value in more comprehensive format (or NULL) */
1071        dict_avpdata_encode      type_encode;   /* cb to convert formatted data into an AVP value (or NULL) */
1072        void                    (*type_dump)(union avp_value * val, FILE * fstr);       /* cb called by fd_msg_dump_one for this type of data (if != NULL), to dump the AVP value in fstr */
1073};
1074
1075/* The criteria for searching a type object in the dictionary */
1076enum {
1077        TYPE_BY_NAME = 30,              /* "what" points to a char * */
1078        TYPE_OF_ENUMVAL,                /* "what" points to a struct dict_object containing an enumerated constant (DICT_ENUMVAL, see bellow). */
1079        TYPE_OF_AVP                     /* "what" points to a struct dict_object containing an AVP object. */
1080};
1081
1082
1083/***
1084 *  API usage :
1085
1086- fd_dict_new:
1087 The "parent" parameter may point to an application object, when a type is defined by a Diameter application.
1088 
1089 Sample code:
1090 {
1091         int ret;
1092         struct dict_object * mytype;
1093         struct dict_type_data mytypedata =
1094                {
1095                 AVP_TYPE_OCTETSTRING,
1096                 "Address",
1097                 NULL,
1098                 NULL
1099                };
1100         ret = fd_dict_new ( dict, DICT_TYPE, &mytypedata, NULL, &mytype );
1101 }
1102
1103- fd_dict_search:
1104 Sample code:
1105 {
1106         int ret;
1107         struct dict_object * address_type;
1108         ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Address", &address_type, ENOENT);
1109 }
1110 
1111*/
1112         
1113/*
1114 ***************************************************************************
1115 *
1116 * Enumerated values object
1117 *
1118 * These types are used to manage named constants of some AVP,
1119 * for enumerated types. freeDiameter allows constants for types others than Unsigned32
1120 *
1121 ***************************************************************************
1122 */
1123
1124/* Type to hold data of named constants for AVP */
1125struct dict_enumval_data {
1126        char *           enum_name;     /* The name of this constant */
1127        union avp_value  enum_value;    /* Value of the constant. Union term depends on parent type's base type. */
1128};
1129
1130/* The criteria for searching a constant in the dictionary */
1131enum {
1132        ENUMVAL_BY_STRUCT = 40, /* "what" points to a struct dict_enumval_request as defined bellow */
1133};
1134
1135struct dict_enumval_request {
1136        /* Identifier of the parent type, one of the following must not be NULL */
1137        struct dict_object      *type_obj;
1138        char *                   type_name;
1139       
1140        /* Search criteria for the constant */
1141        struct dict_enumval_data search; /* search.enum_value is used only if search.enum_name == NULL */
1142};
1143
1144/***
1145 *  API usage :
1146
1147- fd_dict_new:
1148 The "parent" parameter must point to a derived type object.
1149 Sample code to create a type "Boolean" with two constants "True" and "False":
1150 {
1151         int ret;
1152         struct dict_object * type_boolean;
1153         struct dict_type_data type_boolean_data =
1154                {
1155                 AVP_TYPE_INTEGER32,
1156                 "Boolean",
1157                 NULL,
1158                 NULL
1159                };
1160         struct dict_enumval_data boolean_false =
1161                {
1162                 .enum_name="False",
1163                 .enum_value.i32 = 0
1164                };
1165         struct dict_enumval_data boolean_true =
1166                {
1167                 .enum_name="True",
1168                 .enum_value.i32 = -1
1169                };
1170         ret = fd_dict_new ( dict, DICT_TYPE, &type_boolean_data, NULL, &type_boolean );
1171         ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_false, type_boolean, NULL );
1172         ret = fd_dict_new ( dict, DICT_ENUMVAL, &boolean_true , type_boolean, NULL );
1173         
1174 }
1175
1176- fd_dict_search:
1177 Sample code to look for a constant name, by its value:
1178 {
1179         int ret;
1180         struct dict_object * value_found;
1181         struct dict_enumval_request boolean_by_value =
1182                {
1183                 .type_name = "Boolean",
1184                 .search.enum_name=NULL,
1185                 .search.enum_value.i32 = -1
1186                };
1187         
1188         ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1189 }
1190 
1191 - fd_dict_getval:
1192 Sample code to retrieve the data from a constant object:
1193 {
1194         int ret;
1195         struct dict_object * value_found;
1196         struct dict_enumval_data boolean_data = NULL;
1197         struct dict_enumval_request boolean_by_value =
1198                {
1199                 .type_name = "Boolean",
1200                 .search.enum_name=NULL,
1201                 .search.enum_value.i32 = 0
1202                };
1203         
1204         ret = fd_dict_search ( dict, DICT_ENUMVAL, ENUMVAL_BY_STRUCT, &boolean_by_value, &value_found, ENOENT);
1205         ret = fd_dict_getval ( value_found, &boolean_data );
1206         printf(" Boolean with value 0: %s", boolean_data.enum_name );
1207 }
1208*/
1209         
1210/*
1211 ***************************************************************************
1212 *
1213 * AVP object
1214 *
1215 * These objects are used to manage AVP definitions in the dictionary
1216 *
1217 ***************************************************************************
1218 */
1219
1220/* Type to hold an AVP code. For vendor 0, these codes are assigned by IANA. Otherwise, it is managed by the vendor */
1221typedef uint32_t        avp_code_t;
1222
1223/* Values of AVP flags */
1224#define AVP_FLAG_VENDOR         0x80
1225#define AVP_FLAG_MANDATORY      0x40
1226#define AVP_FLAG_RESERVED3      0x20
1227#define AVP_FLAG_RESERVED4      0x10
1228#define AVP_FLAG_RESERVED5      0x08
1229#define AVP_FLAG_RESERVED6      0x04
1230#define AVP_FLAG_RESERVED7      0x02
1231#define AVP_FLAG_RESERVED8      0x01
1232
1233/* For dumping flags and values */
1234#define DUMP_AVPFL_str  "%c%c"
1235#define DUMP_AVPFL_val(_val) (_val & AVP_FLAG_VENDOR)?'V':'-' , (_val & AVP_FLAG_MANDATORY)?'M':'-'
1236
1237/* Type to hold data associated to an avp */
1238struct dict_avp_data {
1239        avp_code_t               avp_code;      /* Code of the avp */
1240        vendor_id_t              avp_vendor;    /* Vendor of the AVP, or 0 */
1241        char *                   avp_name;      /* Name of this AVP */
1242        uint8_t                  avp_flag_mask; /* Mask of fixed AVP flags */
1243        uint8_t                  avp_flag_val;  /* Values of the fixed flags */
1244        enum dict_avp_basetype   avp_basetype;  /* Basic type of data found in the AVP */
1245};
1246
1247/* The criteria for searching an avp object in the dictionary */
1248enum {
1249        AVP_BY_CODE = 50,       /* "what" points to an avp_code_t, vendor is always 0 */
1250        AVP_BY_NAME,            /* "what" points to a char *, vendor is always 0 */
1251        AVP_BY_CODE_AND_VENDOR, /* "what" points to a struct dict_avp_request (see bellow), where avp_vendor and avp_code are set */
1252        AVP_BY_NAME_AND_VENDOR, /* "what" points to a struct dict_avp_request (see bellow), where avp_vendor and avp_name are set */
1253        AVP_BY_NAME_ALL_VENDORS /* "what" points to a string. Might be quite slow... */
1254};
1255
1256/* Struct used for some researchs */
1257struct dict_avp_request {
1258        vendor_id_t      avp_vendor;
1259        avp_code_t       avp_code;
1260        char *           avp_name;
1261};
1262
1263
1264/***
1265 *  API usage :
1266
1267If "parent" parameter is not NULL during AVP creation, it must point to a DICT_TYPE object.
1268The extended type is then attached to the AVP. In case where it is an enumerated type, the value of
1269AVP is automatically interpreted in debug messages, and in message checks.
1270The derived type of an AVP can be retrieved with: dict_search ( DICT_TYPE, TYPE_OF_AVP, avp, ... )
1271
1272To create the rules (ABNF) for children of Grouped AVP, see the DICT_RULE related part.
1273
1274- fd_dict_new:
1275 Sample code for AVP creation:
1276 {
1277         int ret;
1278         struct dict_object * user_name_avp;
1279         struct dict_object * boolean_type;
1280         struct dict_object * sample_boolean_avp;
1281         struct dict_avp_data user_name_data = {
1282                 1,                                     // code
1283                 0,                                     // vendor
1284                 "User-Name",                           // name
1285                 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY,  // fixed mask: V and M values must always be defined as follow. other flags can be set or cleared
1286                 AVP_FLAG_MANDATORY,                    // the V flag must be cleared, the M flag must be set.
1287                 AVP_TYPE_OCTETSTRING                   // User-Name AVP contains OctetString data (further precision such as UTF8String can be given with a parent derived type)
1288         };
1289         struct dict_avp_data sample_boolean_data = {
1290                 31337,
1291                 23455,
1292                 "Sample-Boolean",
1293                 AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY,
1294                 AVP_FLAG_VENDOR,
1295                 AVP_TYPE_INTEGER32                     // This MUST be the same as parent type's
1296         };
1297       
1298         -- Create an AVP with a base type --
1299         ret = fd_dict_new ( dict, DICT_AVP, &user_name_data, NULL, &user_name_avp );
1300         
1301         -- Create an AVP with a derived type --
1302         ret = fd_dict_search ( dict, DICT_TYPE, TYPE_BY_NAME, "Boolean", &boolean_type, ENOENT);
1303         ret = fd_dict_new ( dict, DICT_AVP, &sample_boolean_data , boolean_type, &sample_boolean_avp );
1304         
1305 }
1306
1307- fd_dict_search:
1308 Sample code to look for an AVP
1309 {
1310         int ret;
1311         struct dict_object * avp_username;
1312         struct dict_object * avp_sampleboolean;
1313         struct dict_avp_request avpvendorboolean =
1314                {
1315                 .avp_vendor = 23455,
1316                 .avp_name   = "Sample-Boolean"
1317                };
1318         
1319         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1320         
1321         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME_AND_VENDOR, &avpvendorboolean, &avp_sampleboolean, ENOENT);
1322         
1323 }
1324 
1325 - fd_dict_getval:
1326 Sample code to retrieve the data from an AVP object:
1327 {
1328         int ret;
1329         struct dict_object * avp_username;
1330         struct dict_avp_data user_name_data;
1331         ret = fd_dict_search ( dict, DICT_AVP, AVP_BY_NAME, "User-Name", &avp_username, ENOENT);
1332         ret = fd_dict_getval ( avp_username, &user_name_data );
1333         printf("User-Name code: %d\n", user_name_data.avp_code );
1334 }
1335
1336*/
1337
1338/*
1339 ***************************************************************************
1340 *
1341 * Command object
1342 *
1343 * These types are used to manage commands objects in the dictionary
1344 *
1345 ***************************************************************************
1346 */
1347
1348/* Type to hold a Diameter command code: IANA assigned values. 0x0-0x7fffff=standard, 0x800000-0xfffffd=vendors, 0xfffffe-0xffffff=experimental */
1349typedef uint32_t        command_code_t;
1350
1351/* Values of command flags */
1352#define CMD_FLAG_REQUEST        0x80
1353#define CMD_FLAG_PROXIABLE      0x40
1354#define CMD_FLAG_ERROR          0x20
1355#define CMD_FLAG_RETRANSMIT     0x10
1356#define CMD_FLAG_RESERVED5      0x08
1357#define CMD_FLAG_RESERVED6      0x04
1358#define CMD_FLAG_RESERVED7      0x02
1359#define CMD_FLAG_RESERVED8      0x01
1360
1361/* For dumping flags and values */
1362#define DUMP_CMDFL_str  "%c%c%c%c"
1363#define DUMP_CMDFL_val(_val) (_val & CMD_FLAG_REQUEST)?'R':'-' , (_val & CMD_FLAG_PROXIABLE)?'P':'-' , (_val & CMD_FLAG_ERROR)?'E':'-' , (_val & CMD_FLAG_RETRANSMIT)?'T':'-'
1364
1365/* Type to hold data associated to a command */
1366struct dict_cmd_data {
1367        command_code_t   cmd_code;      /* code of the command */
1368        char *           cmd_name;      /* Name of the command */
1369        uint8_t          cmd_flag_mask; /* Mask of fixed-value flags */
1370        uint8_t          cmd_flag_val;  /* values of the fixed flags */
1371};
1372
1373/* The criteria for searching an avp object in the dictionary */
1374enum {
1375        CMD_BY_NAME = 60,       /* "what" points to a char * */
1376        CMD_BY_CODE_R,          /* "what" points to a command_code_t. The "Request" command is returned. */
1377        CMD_BY_CODE_A,          /* "what" points to a command_code_t. The "Answer" command is returned. */
1378        CMD_ANSWER              /* "what" points to a struct dict_object of a request command. The corresponding "Answer" command is returned. */
1379};
1380
1381
1382/***
1383 *  API usage :
1384
1385The "parent" parameter of dict_new may point to an application object to inform of what application defines the command.
1386The application associated to a command is retrieved with APPLICATION_OF_COMMAND search criteria on applications.
1387
1388To create the rules for children of commands, see the DICT_RULE related part.
1389
1390Note that the "Request" and "Answer" commands are two independant objects. This allows to have different rules for each.
1391
1392- fd_dict_new:
1393 Sample code for command creation:
1394 {
1395         int ret;
1396         struct dict_object * cer;
1397         struct dict_object * cea;
1398         struct dict_cmd_data ce_data = {
1399                 257,                                   // code
1400                 "Capabilities-Exchange-Request",       // name
1401                 CMD_FLAG_REQUEST,                      // mask
1402                 CMD_FLAG_REQUEST                       // value. Only the "R" flag is constrained here, set.
1403         };
1404       
1405         ret = fd_dict_new (dict,  DICT_COMMAND, &ce_data, NULL, &cer );
1406         
1407         ce_data.cmd_name = "Capabilities-Exchange-Answer";
1408         ce_data.cmd_flag_val = 0;                      // Same constraint on "R" flag, but this time it must be cleared.
1409
1410         ret = fd_dict_new ( dict, DICT_COMMAND, &ce_data, NULL, &cea );
1411 }
1412
1413- fd_dict_search:
1414 Sample code to look for a command
1415 {
1416         int ret;
1417         struct dict_object * cer, * cea;
1418         command_code_t code = 257;
1419         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1420         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_CODE_R, &code, &cer, ENOENT);
1421 }
1422 
1423 - fd_dict_getval:
1424 Sample code to retrieve the data from a command object:
1425 {
1426         int ret;
1427         struct dict_object * cer;
1428         struct dict_object * cea;
1429         struct dict_cmd_data cea_data;
1430         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_BY_NAME, "Capabilities-Exchange-Request", &cer, ENOENT);
1431         ret = fd_dict_search ( dict, DICT_COMMAND, CMD_ANSWER, cer, &cea, ENOENT);
1432         ret = fd_dict_getval ( cea, &cea_data );
1433         printf("Answer to CER: %s\n", cea_data.cmd_name );
1434 }
1435
1436*/
1437
1438/*
1439 ***************************************************************************
1440 *
1441 * Rule object
1442 *
1443 * These objects are used to manage rules in the dictionary (ABNF implementation)
1444 * This is used for checking messages validity (more powerful than a DTD)
1445 *
1446 ***************************************************************************
1447 */
1448
1449/* This defines the kind of rule that is defined */
1450enum rule_position {
1451        RULE_FIXED_HEAD = 1,    /* The AVP must be at the head of the group. The rule_order field is used to specify the position. */
1452        RULE_REQUIRED,          /* The AVP must be present in the parent, but its position is not defined. */
1453        RULE_OPTIONAL,          /* The AVP may be present in the message. Used to specify a max number of occurences for example */
1454        RULE_FIXED_TAIL         /* The AVP must be at the end of the group. The rule_order field is used to specify the position. */
1455};
1456
1457/* Content of a RULE object data */
1458struct dict_rule_data {
1459        struct dict_object      *rule_avp;      /* Pointer to the AVP object that is concerned by this rule */
1460        enum rule_position       rule_position; /* The position in which the rule_avp must appear in the parent */
1461        unsigned                 rule_order;    /* for RULE_FIXED_* rules, the place. 1,2,3.. for HEAD rules; ...,3,2,1 for TAIL rules. */
1462        int                      rule_min;      /* Minimum number of occurences. -1 means "default": 0 for optional rules, 1 for other rules */
1463        int                      rule_max;      /* Maximum number of occurences. -1 means no maximum. 0 means the AVP is forbidden. */
1464};
1465
1466/* The criteria for searching a rule in the dictionary */
1467enum {
1468        RULE_BY_AVP_AND_PARENT = 70     /* "what" points to a struct dict_rule_request -- see bellow. This is used to query "what is the rule for this AVP in this group?" */
1469};
1470
1471/* Structure for querying the dictionary about a rule */
1472struct dict_rule_request {
1473        struct dict_object      *rule_parent;   /* The grouped avp or command to which the rule apply */
1474        struct dict_object      *rule_avp;      /* The AVP concerned by this rule */
1475};
1476
1477
1478/***
1479 *  API usage :
1480
1481The "parent" parameter can not be NULL. It points to the object (grouped avp or command) to which this rule apply (i.e. for which the ABNF is defined).
1482
1483- fd_dict_new:
1484 Sample code for rule creation. Let's create the Proxy-Info grouped AVP for example.
1485 {
1486        int ret;
1487        struct dict_object * proxy_info_avp;
1488        struct dict_object * proxy_host_avp;
1489        struct dict_object * proxy_state_avp;
1490        struct dict_object * diameteridentity_type;
1491        struct dict_rule_data rule_data;
1492        struct dict_type_data di_type_data = { AVP_TYPE_OCTETSTRING, "DiameterIdentity", NULL, NULL };
1493        struct dict_avp_data proxy_info_data = { 284, 0, "Proxy-Info", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_GROUPED };
1494        struct dict_avp_data proxy_host_data = { 280, 0, "Proxy-Host", AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1495        struct dict_avp_data proxy_state_data = { 33, 0, "Proxy-State",AVP_FLAG_VENDOR | AVP_FLAG_MANDATORY, AVP_FLAG_MANDATORY, AVP_TYPE_OCTETSTRING };
1496       
1497        -- Create the parent AVP
1498        ret = fd_dict_new ( dict, DICT_AVP, &proxy_info_data, NULL, &proxy_info_avp );
1499       
1500        -- Create the first child AVP.
1501        ret = fd_dict_new ( dict, DICT_TYPE, &di_type_data, NULL, &diameteridentity_type );
1502        ret = fd_dict_new ( dict, DICT_AVP, &proxy_host_data, diameteridentity_type, &proxy_host_avp );
1503       
1504        -- Create the other child AVP
1505        ret = fd_dict_new ( dict, DICT_AVP, &proxy_state_data, NULL, &proxy_state_avp );
1506       
1507        -- Now we can create the rules. Both children AVP are mandatory.
1508        rule_data.rule_position = RULE_REQUIRED;
1509        rule_data.rule_min = -1;
1510        rule_data.rule_max = -1;
1511       
1512        rule_data.rule_avp = proxy_host_avp;
1513        ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1514       
1515        rule_data.rule_avp = proxy_state_avp;
1516        ret = fd_dict_new ( dict, DICT_RULE, &rule_data, proxy_info_avp, NULL );
1517}
1518
1519- fd_dict_search and fd_dict_getval are similar to previous examples.
1520
1521*/
1522               
1523/* Define some hard-coded values */
1524/* Application */
1525#define AI_RELAY                        0xffffffff
1526
1527/* Commands Codes */
1528#define CC_CAPABILITIES_EXCHANGE        257
1529#define CC_RE_AUTH                      258
1530#define CC_ACCOUNTING                   271
1531#define CC_ABORT_SESSION                274
1532#define CC_SESSION_TERMINATION          275
1533#define CC_DEVICE_WATCHDOG              280
1534#define CC_DISCONNECT_PEER              282
1535
1536/* AVPs (Vendor 0) */
1537#define AC_USER_NAME                    1
1538#define AC_PROXY_STATE                  33
1539#define AC_HOST_IP_ADDRESS              257
1540#define AC_AUTH_APPLICATION_ID          258
1541#define AC_ACCT_APPLICATION_ID          259
1542#define AC_VENDOR_SPECIFIC_APPLICATION_ID 260
1543#define AC_REDIRECT_HOST_USAGE          261
1544#define AC_REDIRECT_MAX_CACHE_TIME      262
1545#define AC_SESSION_ID                   263
1546#define AC_ORIGIN_HOST                  264
1547#define AC_SUPPORTED_VENDOR_ID          265
1548#define AC_VENDOR_ID                    266
1549#define AC_FIRMWARE_REVISION            267
1550#define AC_RESULT_CODE                  268
1551#define AC_PRODUCT_NAME                 269
1552#define AC_DISCONNECT_CAUSE             273
1553#define ACV_DC_REBOOTING                        0
1554#define ACV_DC_BUSY                             1
1555#define ACV_DC_NOT_FRIEND                       2
1556#define AC_ORIGIN_STATE_ID              278
1557#define AC_FAILED_AVP                   279
1558#define AC_PROXY_HOST                   280
1559#define AC_ERROR_MESSAGE                281
1560#define AC_ROUTE_RECORD                 282
1561#define AC_DESTINATION_REALM            283
1562#define AC_PROXY_INFO                   284
1563#define AC_REDIRECT_HOST                292
1564#define AC_DESTINATION_HOST             293
1565#define AC_ERROR_REPORTING_HOST         294
1566#define AC_ORIGIN_REALM                 296
1567#define AC_INBAND_SECURITY_ID           299
1568#define ACV_ISI_NO_INBAND_SECURITY              0
1569#define ACV_ISI_TLS                             1
1570
1571/* Error codes from Base protocol
1572(reference: http://www.iana.org/assignments/aaa-parameters/aaa-parameters.xml#aaa-parameters-4)
1573Note that currently, rfc3588bis-26 has some different values for some of these
1574*/
1575#define ER_DIAMETER_MULTI_ROUND_AUTH                    1001
1576
1577#define ER_DIAMETER_SUCCESS                             2001
1578#define ER_DIAMETER_LIMITED_SUCCESS                     2002
1579
1580#define ER_DIAMETER_COMMAND_UNSUPPORTED                 3001 /* 5019 ? */
1581#define ER_DIAMETER_UNABLE_TO_DELIVER                   3002
1582#define ER_DIAMETER_REALM_NOT_SERVED                    3003
1583#define ER_DIAMETER_TOO_BUSY                            3004
1584#define ER_DIAMETER_LOOP_DETECTED                       3005
1585#define ER_DIAMETER_REDIRECT_INDICATION                 3006
1586#define ER_DIAMETER_APPLICATION_UNSUPPORTED             3007
1587#define ER_DIAMETER_INVALID_HDR_BITS                    3008 /* 5020 ? */
1588#define ER_DIAMETER_INVALID_AVP_BITS                    3009 /* 5021 ? */
1589#define ER_DIAMETER_UNKNOWN_PEER                        3010 /* 5018 ? */
1590
1591#define ER_DIAMETER_AUTHENTICATION_REJECTED             4001
1592#define ER_DIAMETER_OUT_OF_SPACE                        4002
1593#define ER_ELECTION_LOST                                4003
1594
1595#define ER_DIAMETER_AVP_UNSUPPORTED                     5001
1596#define ER_DIAMETER_UNKNOWN_SESSION_ID                  5002
1597#define ER_DIAMETER_AUTHORIZATION_REJECTED              5003
1598#define ER_DIAMETER_INVALID_AVP_VALUE                   5004
1599#define ER_DIAMETER_MISSING_AVP                         5005
1600#define ER_DIAMETER_RESOURCES_EXCEEDED                  5006
1601#define ER_DIAMETER_CONTRADICTING_AVPS                  5007
1602#define ER_DIAMETER_AVP_NOT_ALLOWED                     5008
1603#define ER_DIAMETER_AVP_OCCURS_TOO_MANY_TIMES           5009
1604#define ER_DIAMETER_NO_COMMON_APPLICATION               5010
1605#define ER_DIAMETER_UNSUPPORTED_VERSION                 5011
1606#define ER_DIAMETER_UNABLE_TO_COMPLY                    5012
1607#define ER_DIAMETER_INVALID_BIT_IN_HEADER               5013 /* 3011 ? */
1608#define ER_DIAMETER_INVALID_AVP_LENGTH                  5014
1609#define ER_DIAMETER_INVALID_MESSAGE_LENGTH              5015 /* 3012 ? */
1610#define ER_DIAMETER_INVALID_AVP_BIT_COMBO               5016 /* deprecated? */
1611#define ER_DIAMETER_NO_COMMON_SECURITY                  5017
1612
1613
1614/*============================================================*/
1615/*                         SESSIONS                           */
1616/*============================================================*/
1617
1618/* Modules that want to associate a state with a Session-Id must first register a handler of this type */
1619struct session_handler;
1620
1621/* This opaque structure represents a session associated with a Session-Id */
1622struct session;
1623
1624/* The state information that a module associate with a session -- each module defines its own data format */
1625typedef void session_state;
1626
1627/* The following function must be called to activate the session expiry mechanism */
1628int fd_sess_start(void);
1629
1630/*
1631 * FUNCTION:    fd_sess_handler_create
1632 *
1633 * PARAMETERS:
1634 *  handler     : location where the new handler must be stored.
1635 *  cleanup     : a callback function that must be called when the session with associated data is destroyed.
1636 *  opaque      : A pointer that is passed to the cleanup callback -- the content is never examined by the framework.
1637 *
1638 * DESCRIPTION:
1639 *  Create a new session handler. This is needed by a module to associate a state with a session object.
1640 * The cleanup handler is called when the session timeout expires, or fd_sess_destroy is called. It must free
1641 * the state associated with the session, and eventually trig other actions (send a STR, ...).
1642 *
1643 * RETURN VALUE:
1644 *  0           : The new handler has been created.
1645 *  EINVAL      : A parameter is invalid.
1646 *  ENOMEM      : Not enough memory to complete the operation
1647 */
1648int fd_sess_handler_create_internal ( struct session_handler ** handler, void (*cleanup)(session_state * state, os0_t sid, void * opaque), void * opaque );
1649/* Macro to avoid casting everywhere */
1650#define fd_sess_handler_create( _handler, _cleanup, _opaque ) \
1651        fd_sess_handler_create_internal( (_handler), (void (*)(session_state *, os0_t, void *))(_cleanup), (void *)(_opaque) )
1652
1653       
1654/*
1655 * FUNCTION:    fd_sess_handler_destroy
1656 *
1657 * PARAMETERS:
1658 *  handler     : location of an handler created by fd_sess_handler_create.
1659 *  opaque      : the opaque pointer registered with the callback is restored here (if ! NULL).
1660 *
1661 * DESCRIPTION:
1662 *  This destroys a session handler (typically called when an application is shutting down).
1663 * If sessions states are registered with this handler, the cleanup callback is called on them.
1664 *
1665 * RETURN VALUE:
1666 *  0           : The handler was destroyed.
1667 *  EINVAL      : A parameter is invalid.
1668 *  ENOMEM      : Not enough memory to complete the operation
1669 */
1670int fd_sess_handler_destroy ( struct session_handler ** handler, void **opaque );
1671
1672
1673
1674/*
1675 * FUNCTION:    fd_sess_new
1676 *
1677 * PARAMETERS:
1678 *  session       : The location where the session object will be created upon success.
1679 *  diamid        : a Diameter Identity, or NULL.
1680 *  diamidlen     : if diamid is \0-terminated, this can be 0. Otherwise, the length of diamid.
1681 *  opt           : Additional string, or NULL. Usage is described bellow.
1682 *  optlen        : if opt is \0-terminated, this can be 0. Otherwise, the length of opt.
1683 *
1684 * DESCRIPTION:
1685 *   Create a new session object. The Session-Id string associated with this session is generated as follow:
1686 *  If diamId parameter is provided, the string is created according to the RFC: <diamId>;<high32>;<low32>[;opt] where
1687 *    diamId is a Diameter Identity.
1688 *    high32 and low32 are the parts of a monotonic 64 bits counter initialized to (time, 0) at startup.
1689 *    opt is an optional string that can be concatenated to the identifier.
1690 *  If diamId is NULL, the string is exactly the content of opt.
1691 *
1692 * RETURN VALUE:
1693 *  0           : The session is created.
1694 *  EINVAL      : A parameter is invalid.
1695 *  EALREADY    : A session with the same name already exists (returned in *session)
1696 *  ENOMEM      : Not enough memory to complete the operation
1697 */
1698int fd_sess_new ( struct session ** session, DiamId_t diamid, size_t diamidlen, uint8_t * opt, size_t optlen );
1699
1700/*
1701 * FUNCTION:    fd_sess_fromsid
1702 *
1703 * PARAMETERS:
1704 *  sid         : pointer to a string containing a Session-Id (should be UTF-8).
1705 *  len         : length of the sid string (which does not need to be '\0'-terminated)
1706 *  session     : On success, pointer to the session object created / retrieved.
1707 *  isnew       : if not NULL, set to 1 on return if the session object has been created, 0 if it was simply retrieved.
1708 *
1709 * DESCRIPTION:
1710 *   Retrieve a session object from a Session-Id string. In case no session object was previously existing with this
1711 *  id, a new object is silently created (equivalent to fd_sess_new with flag SESSION_NEW_FULL).
1712 *
1713 * RETURN VALUE:
1714 *  0           : The session parameter has been updated.
1715 *  EINVAL      : A parameter is invalid.
1716 *  ENOMEM      : Not enough memory to complete the operation
1717 */
1718int fd_sess_fromsid ( uint8_t * sid, size_t len, struct session ** session, int * isnew);
1719
1720/*
1721 * FUNCTION:    fd_sess_getsid
1722 *
1723 * PARAMETERS:
1724 *  session     : Pointer to a session object.
1725 *  sid         : On success, the location of the sid is stored here.
1726 *
1727 * DESCRIPTION:
1728 *   Retrieve the session identifier (Session-Id) corresponding to a session object.
1729 *  The returned sid is a \0-terminated binary string which might be UTF-8 (but there is no guarantee in the framework).
1730 *  It may be used for example to set the value of an AVP.
1731 *  Note that the sid string is not copied, just its reference... do not free it!
1732 *
1733 * RETURN VALUE:
1734 *  0           : The sid & len parameters have been updated.
1735 *  EINVAL      : A parameter is invalid.
1736 */
1737int fd_sess_getsid ( struct session * session, os0_t * sid, size_t * sidlen );
1738
1739/*
1740 * FUNCTION:    fd_sess_settimeout
1741 *
1742 * PARAMETERS:
1743 *  session     : The session for which to set the timeout.
1744 *  timeout     : The date when the session times out.
1745 *
1746 * DESCRIPTION:
1747 *   Set the lifetime for a given session object. This function may be
1748 * called several times on the same object to update the timeout value.
1749 *   When the timeout date is reached, the cleanup handler of each
1750 * module that registered data with this session is called, then the
1751 * session is cleared.
1752 *
1753 *   There is a possible race condition between cleanup of the session
1754 * and use of its data; applications should ensure that they are not
1755 * using data from a session that is about to expire / expired.
1756 *
1757 * RETURN VALUE:
1758 *  0           : The session timeout has been updated.
1759 *  EINVAL      : A parameter is invalid.
1760 */
1761int fd_sess_settimeout( struct session * session, const struct timespec * timeout );
1762
1763/*
1764 * FUNCTION:    fd_sess_destroy
1765 *
1766 * PARAMETERS:
1767 *  session     : Pointer to a session object.
1768 *
1769 * DESCRIPTION:
1770 *   Destroys all associated states of a session, if any.
1771 * Equivalent to a session timeout expired, but the effect is immediate.
1772 * The session itself is marked as deleted, and will be freed when it is not referenced
1773 * by any message anymore.
1774 *
1775 * RETURN VALUE:
1776 *  0           : The session no longer exists.
1777 *  EINVAL      : A parameter is invalid.
1778 */
1779int fd_sess_destroy ( struct session ** session );
1780
1781/*
1782 * FUNCTION:    fd_sess_reclaim
1783 *
1784 * PARAMETERS:
1785 *  session     : Pointer to a session object.
1786 *
1787 * DESCRIPTION:
1788 *   Equivalent to fd_sess_destroy, only if no session_state is associated with the session.
1789 *  Otherwise, this function has no effect (except that it sets *session to NULL).
1790 *
1791 * RETURN VALUE:
1792 *  0           : The session was reclaimed.
1793 *  EINVAL      : A parameter is invalid.
1794 */
1795int fd_sess_reclaim ( struct session ** session );
1796
1797
1798
1799
1800/*
1801 * FUNCTION:    fd_sess_state_store
1802 *
1803 * PARAMETERS:
1804 *  handler     : The handler with which the state is registered.
1805 *  session     : The session object with which the state is registered.
1806 *  state       : An application state (opaque data) to store with the session.
1807 *
1808 * DESCRIPTION:
1809 *  Stores an application state with a session. This state can later be retrieved
1810 * with fd_sess_state_retrieve, or implicitly in the cleanup handler when the session
1811 * is destroyed.
1812 *
1813 * RETURN VALUE:
1814 *  0           : The state has been stored.
1815 *  EINVAL      : A parameter is invalid.
1816 *  EALREADY    : Data was already associated with this session and client.
1817 *  ENOMEM      : Not enough memory to complete the operation
1818 */
1819int fd_sess_state_store_internal ( struct session_handler * handler, struct session * session, session_state ** state );
1820#define fd_sess_state_store( _handler, _session, _state ) \
1821        fd_sess_state_store_internal( (_handler), (_session), (void *)(_state) )
1822
1823/*
1824 * FUNCTION:    fd_sess_state_retrieve
1825 *
1826 * PARAMETERS:
1827 *  handler     : The handler with which the state was registered.
1828 *  session     : The session object with which the state was registered.
1829 *  state       : Location where the state must be saved if it is found.
1830 *
1831 * DESCRIPTION:
1832 *  Retrieves a state saved by fd_sess_state_store.
1833 * After this function has been called, the state is no longer associated with
1834 * the session. A new call to fd_sess_state_store must be performed in order to
1835 * store again the data with the session.
1836 *
1837 * RETURN VALUE:
1838 *  0           : *state is updated (NULL or points to the state if it was found).
1839 *  EINVAL      : A parameter is invalid.
1840 */
1841int fd_sess_state_retrieve_internal ( struct session_handler * handler, struct session * session, session_state ** state ); 
1842#define fd_sess_state_retrieve( _handler, _session, _state ) \
1843        fd_sess_state_retrieve_internal( (_handler), (_session), (void *)(_state) )
1844
1845
1846/* For debug */
1847void fd_sess_dump(int level, struct session * session);
1848void fd_sess_dump_hdl(int level, struct session_handler * handler);
1849
1850/*============================================================*/
1851/*                         ROUTING                            */
1852/*============================================================*/
1853
1854/* The following functions are helpers for the routing module.
1855  The routing data is stored in the message itself. */
1856
1857/* Structure that contains the routing data for a message */
1858struct rt_data;
1859
1860/* Following functions are helpers to create the routing data of a message */
1861int  fd_rtd_init(struct rt_data ** rtd);
1862void fd_rtd_free(struct rt_data ** rtd);
1863
1864/* Add a peer to the candidates list. */
1865int  fd_rtd_candidate_add(struct rt_data * rtd, DiamId_t peerid, size_t peeridlen, DiamId_t realm, size_t realmlen);
1866
1867/* Remove a peer from the candidates (if it is found). The search is case-insensitive. */
1868void fd_rtd_candidate_del(struct rt_data * rtd, uint8_t * id, size_t idsz);
1869
1870/* Extract the list of valid candidates, and initialize their scores to 0 */
1871void fd_rtd_candidate_extract(struct rt_data * rtd, struct fd_list ** candidates, int ini_score);
1872
1873/* If a peer returned a protocol error for this message, save it so that we don't try to send it there again */
1874int  fd_rtd_error_add(struct rt_data * rtd, DiamId_t sentto, size_t senttolen, uint8_t * origin, size_t originsz, uint32_t rcode);
1875
1876/* The extracted list items have the following structure: */
1877struct rtd_candidate {
1878        struct fd_list  chain;  /* link in the list returned by the previous fct */
1879        DiamId_t        diamid; /* the diameter Id of the peer */
1880        size_t          diamidlen; /* cached size of the diamid string */
1881        DiamId_t        realm;  /* the diameter realm of the peer */
1882        size_t          realmlen; /* cached size of realm */
1883        int             score;  /* the current routing score for this peer, see fd_rt_out_register definition for details */
1884};
1885
1886/* Reorder the list of peers by score */
1887int  fd_rtd_candidate_reorder(struct fd_list * candidates);
1888
1889/* Note : it is fine for a callback to add a new entry in the candidates list after the list has been extracted. The diamid must then be malloc'd. */
1890/* Beware that this could lead to routing loops */
1891
1892/*============================================================*/
1893/*                         MESSAGES                           */
1894/*============================================================*/
1895
1896/* The following types are opaque */
1897struct  msg;    /* A message: command with children AVPs (possibly grand children) */
1898struct  avp;    /* AVP object */
1899
1900/* Some details about chaining:
1901 *
1902 *  A message is made of a header ( msg ) and 0 or more AVPs ( avp ).
1903 * The structure is a kind of tree, where some AVPs (grouped AVPs) can contain other AVPs.
1904 * Exemple:
1905 * msg
1906 *  |-avp
1907 *  |-gavp
1908 *  |   |-avp
1909 *  |   |-avp
1910 *  |   \-avp
1911 *  |-avp
1912 *  \-avp
1913 *
1914 */
1915
1916/* The following type is used to point to either a msg or an AVP */
1917typedef void msg_or_avp;
1918
1919/* The Diameter protocol version */
1920#define DIAMETER_VERSION        1
1921
1922/* In the two following types, some fields are marked (READONLY).
1923 * This means that the content of these fields will be overwritten by the daemon so modifying it is useless.
1924 */
1925
1926/* The following structure represents the header of a message. All data is in host byte order. */
1927struct msg_hdr {
1928        uint8_t          msg_version;           /* (READONLY) Version of Diameter: must be DIAMETER_VERSION. */
1929        uint32_t         msg_length;            /* (READONLY)(3 bytes) indicates the length of the message */
1930        uint8_t          msg_flags;             /* Message flags: CMD_FLAG_* */
1931        command_code_t   msg_code;              /* (3 bytes) the command-code. See dictionary-api.h for more detail */
1932        application_id_t msg_appl;              /* The application issuing this message */
1933        uint32_t         msg_hbhid;             /* The Hop-by-Hop identifier of the message */
1934        uint32_t         msg_eteid;             /* The End-to-End identifier of the message */
1935};
1936
1937/* The following structure represents the visible content of an AVP. All data is in host byte order. */
1938struct avp_hdr {
1939        avp_code_t       avp_code;              /* the AVP Code */
1940        uint8_t          avp_flags;             /* AVP_FLAG_* flags */
1941        uint32_t         avp_len;               /* (READONLY)(Only 3 bytes are used) the length of the AVP as described in the RFC */
1942        vendor_id_t      avp_vendor;            /* Only used if AVP_FLAG_VENDOR is present */
1943        union avp_value *avp_value;             /* pointer to the value of the AVP. NULL means that the value is not set / not understood.
1944                                                   One should not directly change this value. Use the msg_avp_setvalue function instead.
1945                                                   The content of the pointed structure can be changed directly, with this restriction:
1946                                                     if the AVP is an OctetString, and you change the value of the pointer avp_value->os.data, then
1947                                                     you must call free() on the previous value, and the new one must be free()-able.
1948                                                 */
1949};
1950
1951/* The following enum is used to browse inside message hierarchy (msg, gavp, avp) */
1952enum msg_brw_dir {
1953        MSG_BRW_NEXT = 1,       /* Get the next element at the same level, or NULL if this is the last element. */
1954        MSG_BRW_PREV,           /* Get the previous element at the same level, or NULL if this is the first element. */
1955        MSG_BRW_FIRST_CHILD,    /* Get the first child AVP of this element, if any. */
1956        MSG_BRW_LAST_CHILD,     /* Get the last child AVP of this element, if any. */
1957        MSG_BRW_PARENT,         /* Get the parent element of this element, if any. Only the msg_t object has no parent. */
1958        MSG_BRW_WALK            /* This is equivalent to FIRST_CHILD or NEXT or PARENT->next, first that is not NULL. Use this to walk inside all AVPs. */
1959};
1960
1961/* Some flags used in the functions bellow */
1962#define AVPFL_SET_BLANK_VALUE   0x01    /* When creating an AVP, initialize its value to a blank area */
1963#define AVPFL_MAX               AVPFL_SET_BLANK_VALUE   /* The biggest valid flag value */
1964       
1965#define MSGFL_ALLOC_ETEID       0x01    /* When creating a message, a new end-to-end ID is allocated and set in the message */
1966#define MSGFL_ANSW_ERROR        0x02    /* When creating an answer message, set the 'E' bit and use the generic error ABNF instead of command-specific ABNF */
1967#define MSGFL_ANSW_NOSID        0x04    /* When creating an answer message, do not add the Session-Id even if present in request */
1968#define MSGFL_MAX               MSGFL_ANSW_NOSID        /* The biggest valid flag value */
1969
1970/**************************************************/
1971/*   Message creation, manipulation, disposal     */
1972/**************************************************/
1973/*
1974 * FUNCTION:    fd_msg_avp_new
1975 *
1976 * PARAMETERS:
1977 *  model       : Pointer to a DICT_AVP dictionary object describing the avp to create, or NULL.
1978 *  flags       : Flags to use in creation (AVPFL_*).
1979 *  avp         : Upon success, pointer to the new avp is stored here.
1980 *
1981 * DESCRIPTION:
1982 *   Create a new AVP instance.
1983 *
1984 * RETURN VALUE:
1985 *  0           : The AVP is created.
1986 *  EINVAL      : A parameter is invalid.
1987 *  (other standard errors may be returned, too, with their standard meaning. Example:
1988 *    ENOMEM    : Memory allocation for the new avp failed.)
1989 */
1990int fd_msg_avp_new ( struct dict_object * model, int flags, struct avp ** avp );
1991
1992/*
1993 * FUNCTION:    fd_msg_new
1994 *
1995 * PARAMETERS:
1996 *  model       : Pointer to a DICT_COMMAND dictionary object describing the message to create, or NULL.
1997 *  flags       : combination of MSGFL_* flags.
1998 *  msg         : Upon success, pointer to the new message is stored here.
1999 *
2000 * DESCRIPTION:
2001 *   Create a new empty Diameter message.
2002 *
2003 * RETURN VALUE:
2004 *  0           : The message is created.
2005 *  EINVAL      : A parameter is invalid.
2006 *  (other standard errors may be returned, too, with their standard meaning. Example:
2007 *    ENOMEM    : Memory allocation for the new message failed.)
2008 */
2009int fd_msg_new ( struct dict_object * model, int flags, struct msg ** msg );
2010
2011/*
2012 * FUNCTION:    msg_new_answer_from_req
2013 *
2014 * PARAMETERS:
2015 *  dict        : Pointer to the dictionary containing the model of the query.
2016 *  msg         : The location of the query on function call. Updated by the location of answer message on return.
2017 *  flag        : Pass MSGFL_ANSW_ERROR to indicate if the answer is an error message (will set the 'E' bit)
2018 *
2019 * DESCRIPTION:
2020 *   This function creates the empty answer message corresponding to a request.
2021 *  The header is set properly (R flag, ccode, appid, hbhid, eteid)
2022 *  The Session-Id AVP is copied if present.
2023 *  The calling code should usually call fd_msg_rescode_set function on the answer.
2024 *  Upon return, the original query may be retrieved by calling fd_msg_answ_getq on the message.
2025 *
2026 * RETURN VALUE:
2027 *  0           : Operation complete.
2028 *  !0          : an error occurred.
2029 */
2030int fd_msg_new_answer_from_req ( struct dictionary * dict, struct msg ** msg, int flag );
2031
2032/*
2033 * FUNCTION:    fd_msg_browse
2034 *
2035 * PARAMETERS:
2036 *  reference   : Pointer to a struct msg or struct avp.
2037 *  dir         : Direction for browsing
2038 *  found       : If not NULL, updated with the element that has been found, if any, or NULL if no element was found / an error occurred.
2039 *  depth       : If not NULL, points to an integer representing the "depth" of this object in the tree. This is a relative value, updated on return.
2040 *
2041 * DESCRIPTION:
2042 *   Explore the content of a message object (hierarchy). If "found" is null, only error checking is performed.
2043 *  If "depth" is provided, it is updated as follow on successful function return:
2044 *   - not modified for MSG_BRW_NEXT and MSG_BRW_PREV.
2045 *   - *depth = *depth + 1 for MSG_BRW_FIRST_CHILD and MSG_BRW_LAST_CHILD.
2046 *   - *depth = *depth - 1 for MSG_BRW_PARENT.
2047 *   - *depth = *depth + X for MSG_BRW_WALK, with X between 1 (returned the 1st child) and -N (returned the Nth parent's next).
2048 *
2049 * RETURN VALUE:
2050 *  0           : found has been updated (if non NULL).
2051 *  EINVAL      : A parameter is invalid.
2052 *  ENOENT      : No element has been found where requested, and "found" was NULL (otherwise, *found is set to NULL and 0 is returned).
2053 */
2054int fd_msg_browse_internal ( msg_or_avp * reference, enum msg_brw_dir dir, msg_or_avp ** found, int * depth );
2055/* Macro to avoid having to cast the third parameter everywhere */
2056#define fd_msg_browse( ref, dir, found, depth ) \
2057        fd_msg_browse_internal( (ref), (dir), (void *)(found), (depth) )
2058
2059
2060/*
2061 * FUNCTION:    fd_msg_avp_add
2062 *
2063 * PARAMETERS:
2064 *  reference   : Pointer to a valid msg or avp.
2065 *  dir         : location where the new AVP should be inserted, relative to the reference. MSG_BRW_PARENT and MSG_BRW_WALK are not valid.
2066 *  avp         : pointer to the AVP object that must be inserted.
2067 *
2068 * DESCRIPTION:
2069 *   Adds an AVP into an object that can contain it: grouped AVP or message.
2070 * Note that the added AVP will be freed at the same time as the object it is added to,
2071 * so it should not be freed after the call to this function.
2072 *
2073 * RETURN VALUE:
2074 *  0           : The AVP has been added.
2075 *  EINVAL      : A parameter is invalid.
2076 */
2077int fd_msg_avp_add ( msg_or_avp * reference, enum msg_brw_dir dir, struct avp *avp);
2078
2079/*
2080 * FUNCTION:    fd_msg_search_avp
2081 *
2082 * PARAMETERS:
2083 *  msg         : The message structure in which to search the AVP.
2084 *  what        : The dictionary model of the AVP to search.
2085 *  avp         : location where the AVP reference is stored if found.
2086 *
2087 * DESCRIPTION:
2088 *   Search the first top-level AVP of a given model inside a message.
2089 * Note: only the first instance of the AVP is returned by this function.
2090 * Note: only top-level AVPs are searched, not inside grouped AVPs.
2091 * Use msg_browse if you need more advanced research features.
2092 *
2093 * RETURN VALUE:
2094 *  0           : The AVP has been found.
2095 *  EINVAL      : A parameter is invalid.
2096 *  ENOENT      : No AVP has been found, and "avp" was NULL (otherwise, *avp is set to NULL and 0 returned).
2097 */
2098int fd_msg_search_avp ( struct msg * msg, struct dict_object * what, struct avp ** avp );
2099
2100/*
2101 * FUNCTION:    fd_msg_free
2102 *
2103 * PARAMETERS:
2104 *  object      : pointer to the message or AVP object that must be unlinked and freed.
2105 *
2106 * DESCRIPTION:
2107 *   Unlink and free a message or AVP object and its children.
2108 *  If the object is an AVP linked into a message, the AVP is removed before being freed.
2109 *
2110 * RETURN VALUE:
2111 *  0           : The message has been freed.
2112 *  EINVAL      : A parameter is invalid.
2113 */
2114int fd_msg_free ( msg_or_avp * object );
2115
2116/***************************************/
2117/*   Dump functions                    */
2118/***************************************/
2119/*
2120 * FUNCTION:    fd_msg_dump_*
2121 *
2122 * PARAMETERS:
2123 *  level       : the log level (INFO, FULL, ...) at which the object is dumped
2124 *  obj         : A msg or avp object.
2125 *
2126 * DESCRIPTION:
2127 *   These functions dump the content of a message to the debug log
2128 * either recursively or only the object itself.
2129 *
2130 * RETURN VALUE:
2131 *   -
2132 */
2133void fd_msg_dump_walk ( int level, msg_or_avp *obj );
2134void fd_msg_dump_one  ( int level, msg_or_avp *obj );
2135
2136/*
2137 * FUNCTION:    fd_msg_log
2138 *
2139 * PARAMETERS:
2140 *  cause        : Context for calling this function. This allows the log facility to be configured precisely.
2141 *  msg          : The message to log.
2142 *  prefix_format: Printf-style format message that is printed ahead of the message. Might be reason for drop or so.
2143 *
2144 * DESCRIPTION:
2145 *   This function is called when a Diameter message reaches some particular points in the fD framework.
2146 * The actual effect is configurable: log in a separate file, dump in the debug log, etc.
2147 *
2148 * RETURN VALUE:
2149 *   -
2150 */
2151enum fd_msg_log_cause {
2152        FD_MSG_LOG_DROPPED = 0,  /* message has been dropped by the framework */ 
2153        FD_MSG_LOG_RECEIVED,     /* message received from the network */ 
2154        FD_MSG_LOG_SENT,         /* message sent to another peer */ 
2155        FD_MSG_LOG_NODELIVER     /* message could not be delivered to any peer */ 
2156};
2157#define FD_MSG_LOG_MAX FD_MSG_LOG_NODELIVER
2158void fd_msg_log( enum fd_msg_log_cause cause, struct msg * msg, const char * prefix_format, ... );
2159
2160/* configure the msg_log facility */
2161enum fd_msg_log_method {
2162        FD_MSG_LOGTO_DEBUGONLY = 0, /* Simply log the message with other debug information, at the INFO level. This is default */
2163        FD_MSG_LOGTO_FILE,    /* Messages are dumped in a single file, defined in arg */
2164        FD_MSG_LOGTO_DIR    /* Messages are dumped in different files within one directory defined in arg. */
2165};
2166int fd_msg_log_config(enum fd_msg_log_cause cause, enum fd_msg_log_method method, const char * arg);
2167void fd_msg_log_init(struct dictionary *dict);
2168
2169/*********************************************/
2170/*   Message metadata management functions   */
2171/*********************************************/
2172/*
2173 * FUNCTION:    fd_msg_model
2174 *
2175 * PARAMETERS:
2176 *  reference   : Pointer to a valid msg or avp.
2177 *  model       : on success, pointer to the dictionary model of this command or AVP. NULL if the model is unknown.
2178 *
2179 * DESCRIPTION:
2180 *   Retrieve the dictionary object describing this message or avp. If the object is unknown or the fd_msg_parse_dict has not been called,
2181 *  *model is set to NULL.
2182 *
2183 * RETURN VALUE:
2184 *  0           : The model has been set.
2185 *  EINVAL      : A parameter is invalid.
2186 */
2187int fd_msg_model ( msg_or_avp * reference, struct dict_object ** model );
2188
2189/*
2190 * FUNCTION:    fd_msg_hdr
2191 *
2192 * PARAMETERS:
2193 *  msg         : Pointer to a valid message object.
2194 *  pdata       : Upon success, pointer to the msg_hdr structure of this message. The fields may be modified.
2195 *
2196 * DESCRIPTION:
2197 *   Retrieve location of modifiable section of a message.
2198 *
2199 * RETURN VALUE:
2200 *  0           : The location has been written.
2201 *  EINVAL      : A parameter is invalid.
2202 */
2203int fd_msg_hdr ( struct msg *msg, struct msg_hdr ** pdata );
2204
2205/*
2206 * FUNCTION:    fd_msg_avp_hdr
2207 *
2208 * PARAMETERS:
2209 *  avp         : Pointer to a valid avp object.
2210 *  pdata       : Upon success, pointer to the avp_hdr structure of this avp. The fields may be modified.
2211 *
2212 * DESCRIPTION:
2213 *   Retrieve location of modifiable data of an avp.
2214 *
2215 * RETURN VALUE:
2216 *  0           : The location has been written.
2217 *  EINVAL      : A parameter is invalid.
2218 */
2219int fd_msg_avp_hdr ( struct avp *avp, struct avp_hdr ** pdata );
2220
2221/*
2222 * FUNCTION:    fd_msg_answ_associate, fd_msg_answ_getq, fd_msg_answ_detach
2223 *
2224 * PARAMETERS:
2225 *  answer      : the received answer message
2226 *  query       : the corresponding query that had been sent
2227 *
2228 * DESCRIPTION:
2229 *  fd_msg_answ_associate associates a query msg with the received answer.
2230 * Query is retrieved with fd_msg_answ_getq.
2231 * If answer message is freed, the query is also freed.
2232 * If the msg_answ_detach function is called, the association is removed.
2233 * This is meant to be called from the daemon only.
2234 *
2235 * RETURN VALUE:
2236 *  0     : ok
2237 *  EINVAL: a parameter is invalid
2238 */
2239int fd_msg_answ_associate( struct msg * answer, struct msg * query );
2240int fd_msg_answ_getq     ( struct msg * answer, struct msg ** query );
2241int fd_msg_answ_detach   ( struct msg * answer );
2242
2243/*
2244 * FUNCTION:    fd_msg_anscb_associate, fd_msg_anscb_get
2245 *
2246 * PARAMETERS:
2247 *  msg         : the answer message
2248 *  anscb       : the callback to associate with the message
2249 *  data        : the data to pass to the callback
2250 *  timeout     : (optional, use NULL if no timeout) a timeout associated with calling the cb.
2251 *
2252 * DESCRIPTION:
2253 *  Associate or retrieve a callback with an answer message.
2254 * This is meant to be called from the daemon only.
2255 *
2256 * RETURN VALUE:
2257 *  0     : ok
2258 *  EINVAL: a parameter is invalid
2259 */
2260int fd_msg_anscb_associate( struct msg * msg, void ( *anscb)(void *, struct msg **), void  * data, const struct timespec *timeout );
2261int fd_msg_anscb_get      ( struct msg * msg, void (**anscb)(void *, struct msg **), void ** data );
2262struct timespec *fd_msg_anscb_gettimeout( struct msg * msg ); /* returns NULL or a valid non-0 timespec */
2263
2264/*
2265 * FUNCTION:    fd_msg_rt_associate, fd_msg_rt_get
2266 *
2267 * PARAMETERS:
2268 *  msg         : the query message to be sent
2269 *  list        : the ordered list of possible next-peers
2270 *
2271 * DESCRIPTION:
2272 *  Associate a routing list with a query, and retrieve it.
2273 * If the message is freed, the list is also freed.
2274 *
2275 * RETURN VALUE:
2276 *  0     : ok
2277 *  EINVAL: a parameter is invalid
2278 */
2279int fd_msg_rt_associate( struct msg * msg, struct rt_data ** rtd );
2280int fd_msg_rt_get      ( struct msg * msg, struct rt_data ** rtd );
2281
2282/*
2283 * FUNCTION:    fd_msg_is_routable
2284 *
2285 * PARAMETERS:
2286 *  msg         : A msg object.
2287 *
2288 * DESCRIPTION:
2289 *   This function returns a boolean telling if a given message is routable in the Diameter network,
2290 *  or if it is a local link message only (ex: CER/CEA, DWR/DWA, ...).
2291 *
2292 * RETURN VALUE:
2293 *  0           : The message is not routable / an error occurred.
2294 *  1           : The message is routable.
2295 */
2296int fd_msg_is_routable ( struct msg * msg );
2297
2298/*
2299 * FUNCTION:    fd_msg_source_(g/s)et
2300 *
2301 * PARAMETERS:
2302 *  msg         : A msg object.
2303 *  diamid,len  : The diameter id of the peer from which this message was received.
2304 *  add_rr      : if true, a Route-Record AVP is added to the message with content diamid. In that case, dict must be supplied.
2305 *  dict        : a dictionary with definition of Route-Record AVP (if add_rr is true)
2306 *
2307 * DESCRIPTION:
2308 *   Store or retrieve the diameted id of the peer from which this message was received.
2309 * Will be used for example by the routing module to add the Route-Record AVP in forwarded requests,
2310 * or to direct answers to the appropriate peer.
2311 *
2312 * RETURN VALUE:
2313 *  0           : Operation complete.
2314 *  !0          : an error occurred.
2315 */
2316int fd_msg_source_set( struct msg * msg, DiamId_t diamid, size_t diamidlen, int add_rr, struct dictionary * dict );
2317int fd_msg_source_get( struct msg * msg, DiamId_t *diamid, size_t * diamidlen );
2318
2319/*
2320 * FUNCTION:    fd_msg_eteid_get
2321 *
2322 * PARAMETERS:
2323 *  -
2324 *
2325 * DESCRIPTION:
2326 *   Get a new unique end-to-end id value for the local peer.
2327 *
2328 * RETURN VALUE:
2329 *  The new assigned value. No error code is defined.
2330 */
2331uint32_t fd_msg_eteid_get ( void );
2332
2333
2334/*
2335 * FUNCTION:    fd_msg_sess_get
2336 *
2337 * PARAMETERS:
2338 *  dict        : the dictionary that contains the Session-Id AVP definition
2339 *  msg         : A valid message.
2340 *  session     : Location to store the session pointer when retrieved.
2341 *  isnew       : Indicates if the session has been created.
2342 *
2343 * DESCRIPTION:
2344 *  This function retrieves or creates the session object corresponding to a message.
2345 * If the message does not contain a Session-Id AVP, *session == NULL on return.
2346 * Note that the Session-Id AVP must never be modified after created in a message.
2347 *
2348 * RETURN VALUE:
2349 *  0 : success
2350 * !0 : standard error code.
2351 */
2352int fd_msg_sess_get(struct dictionary * dict, struct msg * msg, struct session ** session, int * isnew);
2353
2354/***************************************/
2355/*   Manage AVP values                 */
2356/***************************************/
2357
2358/*
2359 * FUNCTION:    fd_msg_avp_setvalue
2360 *
2361 * PARAMETERS:
2362 *  avp         : Pointer to a valid avp object with a NULL avp_value pointer. The model must be known.
2363 *  value       : pointer to an avp_value. The content will be COPIED into the internal storage area.
2364 *               If data type is an octetstring, the data is also copied.
2365 *               If value is a NULL pointer, the previous data is erased and value is unset in the AVP.
2366 *
2367 * DESCRIPTION:
2368 *   Initialize the avp_value field of an AVP header.
2369 *
2370 * RETURN VALUE:
2371 *  0           : The avp_value pointer has been set.
2372 *  EINVAL      : A parameter is invalid.
2373 */
2374int fd_msg_avp_setvalue ( struct avp *avp, union avp_value *value );
2375
2376/*
2377 * FUNCTION:    fd_msg_avp_value_encode
2378 *
2379 * PARAMETERS:
2380 *  avp         : Pointer to a valid avp object with a NULL avp_value. The model must be known.
2381 *  data        : Pointer to the data that must be encoded as AVP value and stored in the AVP.
2382 *               This is only valid for AVPs of derived type for which type_data_encode callback is set. (ex: Address type)
2383 *
2384 * DESCRIPTION:
2385 *   Initialize the avp_value field of an AVP object from formatted data, using the AVP's type "type_data_encode" callback.
2386 *
2387 * RETURN VALUE:
2388 *  0           : The avp_value has been set.
2389 *  EINVAL      : A parameter is invalid.
2390 *  ENOTSUP     : There is no appropriate callback registered with this AVP's type.
2391 */
2392int fd_msg_avp_value_encode ( void *data, struct avp *avp );
2393/*
2394 * FUNCTION:    fd_msg_avp_value_interpret
2395 *
2396 * PARAMETERS:
2397 *  avp         : Pointer to a valid avp object with a non-NULL avp_value value.
2398 *  data        : Upon success, formatted interpretation of the AVP value is stored here.
2399 *
2400 * DESCRIPTION:
2401 *   Interpret the content of an AVP of Derived type and store the result in data pointer. The structure
2402 * of the data pointer is dependent on the AVP type. This function calls the "type_data_interpret" callback
2403 * of the type.
2404 *
2405 * RETURN VALUE:
2406 *  0           : The avp_value has been set.
2407 *  EINVAL      : A parameter is invalid.
2408 *  ENOTSUP     : There is no appropriate callback registered with this AVP's type.
2409 */
2410int fd_msg_avp_value_interpret ( struct avp *avp, void *data );
2411
2412
2413/***************************************/
2414/*   Message parsing functions         */
2415/***************************************/
2416
2417/*
2418 * FUNCTION:    fd_msg_bufferize
2419 *
2420 * PARAMETERS:
2421 *  msg         : A valid msg object. All AVPs must have a value set.
2422 *  buffer      : Upon success, this points to a buffer (malloc'd) containing the message ready for network transmission (or security transformations).
2423 *               The buffer may be freed after use.
2424 *  len         : if not NULL, the size of the buffer is written here. In any case, this size is updated in the msg header.
2425 *
2426 * DESCRIPTION:
2427 *   Renders a message in memory as a buffer that can be sent over the network to the next peer.
2428 *
2429 * RETURN VALUE:
2430 *  0           : The location has been written.
2431 *  EINVAL      : The buffer does not contain a valid Diameter message.
2432 *  ENOMEM      : Unable to allocate enough memory to create the buffer object.
2433 */
2434int fd_msg_bufferize ( struct msg * msg, uint8_t ** buffer, size_t * len );
2435
2436/*
2437 * FUNCTION:    fd_msg_parse_buffer
2438 *
2439 * PARAMETERS:
2440 *  buffer      : Pointer to a buffer containing a message received from the network.
2441 *  buflen      : the size in bytes of the buffer.
2442 *  msg         : Upon success, this points to a valid msg object. No AVP value is resolved in this object, nor grouped AVP.
2443 *
2444 * DESCRIPTION:
2445 *   This function parses a buffer an creates a msg object to represent the structure of the message.
2446 *  Since no dictionary lookup is performed, the values of the AVPs are not interpreted. To interpret the values,
2447 *  the returned message object must be passed to fd_msg_parse_dict function.
2448 *  The buffer pointer is saved inside the message and will be freed when not needed anymore.
2449 *
2450 * RETURN VALUE:
2451 *  0           : The location has been written.
2452 *  ENOMEM      : Unable to allocate enough memory to create the msg object.
2453 *  EBADMSG     : The buffer does not contain a valid Diameter message (or is truncated).
2454 *  EINVAL      : A parameter is invalid.
2455 */
2456int fd_msg_parse_buffer ( uint8_t ** buffer, size_t buflen, struct msg ** msg );
2457
2458/* Parsing Error Information structure */
2459struct fd_pei {
2460        char *          pei_errcode;    /* name of the error code to use */
2461        struct avp *    pei_avp;        /* pointer to invalid or missing AVP (to be freed) */
2462        char *          pei_message;    /* Overwrite default message if needed */
2463        int             pei_protoerr;   /* do we set the 'E' bit in the error message ? */
2464};
2465
2466/*
2467 * FUNCTION:    fd_msg_parse_dict
2468 *
2469 * PARAMETERS:
2470 *  object      : A msg or AVP object as returned by fd_msg_parse_buffer.
2471 *  dict        : the dictionary containing the objects definitions to use for resolving all AVPs.
2472 *  error_info  : If not NULL, will contain the detail about error upon return. May be used to generate an error reply.
2473 *
2474 * DESCRIPTION:
2475 *   This function looks up for the command and each children AVP definitions in the dictionary.
2476 *  If the dictionary definition is found, avp_model is set and the value of the AVP is interpreted accordingly and:
2477 *   - for grouped AVPs, the children AVP are created and interpreted also.
2478 *   - for numerical AVPs, the value is converted to host byte order and saved in the avp_value field.
2479 *   - for octetstring AVPs, the string is copied into a new buffer and its address is saved in avp_value.
2480 *  If the dictionary definition is not found, avp_model is set to NULL and
2481 *  the content of the AVP is saved as an octetstring in an internal structure. avp_value is NULL.
2482 *  As a result, after this function has been called, there is no more dependency of the msg object to the message buffer, that is freed.
2483 *
2484 * RETURN VALUE:
2485 *  0           : The message has been fully parsed as described.
2486 *  EINVAL      : The msg parameter is invalid for this operation.
2487 *  ENOMEM      : Unable to allocate enough memory to complete the operation.
2488 *  ENOTSUP     : No dictionary definition for the command or one of the mandatory AVP was found.
2489 */
2490int fd_msg_parse_dict ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info );
2491
2492/*
2493 * FUNCTION:    fd_msg_parse_rules
2494 *
2495 * PARAMETERS:
2496 *  object      : A msg or grouped avp object that must be verified.
2497 *  dict        : The dictionary containing the rules definitions.
2498 *  error_info  : If not NULL, the first problem information will be saved here.
2499 *
2500 * DESCRIPTION:
2501 *   Check that the children of the object do not conflict with the dictionary rules (ABNF compliance).
2502 *
2503 * RETURN VALUE:
2504 *  0           : The message has been fully parsed and complies to the defined rules.
2505 *  EBADMSG     : A conflict was detected, or a mandatory AVP is unknown in the dictionary.
2506 *  EINVAL      : The msg or avp object is invalid for this operation.
2507 *  ENOMEM      : Unable to allocate enough memory to complete the operation.
2508 */
2509int fd_msg_parse_rules ( msg_or_avp * object, struct dictionary * dict, struct fd_pei * error_info);
2510
2511
2512
2513/*
2514 * FUNCTION:    fd_msg_update_length
2515 *
2516 * PARAMETERS:
2517 *  object      : Pointer to a valid msg or avp.
2518 *
2519 * DESCRIPTION:
2520 *   Update the length field of the object passed as parameter.
2521 * As a side effect, all children objects are also updated. Therefore, all avp_value fields of
2522 * the children AVPs must be set, or an error will occur.
2523 *
2524 * RETURN VALUE:
2525 *  0           : The size has been recomputed.
2526 *  EINVAL      : A parameter is invalid.
2527 */
2528int fd_msg_update_length ( msg_or_avp * object );
2529
2530
2531/*============================================================*/
2532/*                         DISPATCH                           */
2533/*============================================================*/
2534
2535/* Dispatch module (passing incoming messages to extensions registered callbacks)
2536 * is split between the library and the daemon.
2537 *
2538 * The library provides the support for associating dispatch callbacks with
2539 * dictionary objects.
2540 *
2541 * The daemon is responsible for calling the callbacks for a message when appropriate.
2542 *
2543 *
2544 * The dispatch module has two main roles:
2545 *  - help determine if a message can be handled locally (during the routing step)
2546 *        This decision involves only the application-id of the message.
2547 *  - pass the message to the callback(s) that will handle it (during the dispatch step)
2548 *
2549 * The first role is handled by the daemon.
2550 *
2551 * About the second, these are the possibilities for registering a dispatch callback:
2552 *
2553 * -> For All messages.
2554 *  This callback is called for all messages that are handled locally. This should be used only
2555 *  for debug purpose.
2556 *
2557 * -> by AVP value (constants only).
2558 *  This callback will be called when a message is received and contains an AVP with a specified enumerated value.
2559 *
2560 * -> by AVP.
2561 *  This callback will be called when the received message contains a certain AVP.
2562 *
2563 * -> by command-code.
2564 *  This callback will be called when the message is a specific command (and 'R' flag).
2565 *
2566 * -> by application.
2567 *  This callback will be called when the message has a specific application-id.
2568 *
2569 * ( by vendor: would this be useful? it may be added later)
2570 */
2571enum disp_how {
2572        DISP_HOW_ANY = 1,               /* Any message. This should be only used for debug. */
2573        DISP_HOW_APPID,                 /* Any message with the specified application-id */
2574        DISP_HOW_CC,                    /* Messages of the specified command-code (request or answer). App id may be specified. */
2575        DISP_HOW_AVP,                   /* Messages containing a specific AVP. Command-code and App id may be specified. */
2576        DISP_HOW_AVP_ENUMVAL            /* Messages containing a specific AVP with a specific enumerated value. Command-code and App id may be specified. */
2577};
2578/*
2579 * Several criteria may be selected at the same time, for example command-code AND application id.
2580 *
2581 * If several callbacks are registered for the same object, they are called in the order they were registered.
2582 * The order in which the callbacks are called is:
2583 *  DISP_HOW_ANY
2584 *  DISP_HOW_AVP_ENUMVAL & DISP_HOW_AVP
2585 *  DISP_HOW_CC
2586 *  DISP_HOW_APPID
2587 */
2588
2589/* When a callback is registered, a "when" argument is passed in addition to the disp_how value,
2590 * to specify which values the criteria must match. */
2591struct disp_when {
2592        struct dict_object *    app;
2593        struct dict_object *    command;
2594        struct dict_object *    avp;
2595        struct dict_object *    value;
2596};
2597
2598/* Note that all the dictionary objects should really belong to the same dictionary!
2599 *
2600 * Here is the details on this "when" argument, depending on the disp_how value.
2601 *
2602 * DISP_HOW_ANY.
2603 *  In this case, "when" must be NULL.
2604 *
2605 * DISP_HOW_APPID.
2606 *  Only the "app_id" field must be set, other fields are ignored. It points to a dictionary object of type DICT_APPLICATION.
2607 *
2608 * DISP_HOW_CC.
2609 *  The "command" field must be defined and point to a dictionary object of type DICT_COMMAND.
2610 *  The "app_id" may be also set. In the case it is set, it restricts the callback to be called only with this command-code and app id.
2611 *  The other fields are ignored.
2612 *
2613 * DISP_HOW_AVP.
2614 *  The "avp" field of the structure must be set and point to a dictionary object of type DICT_AVP.
2615 *  The "app_id" field may be set to restrict the messages matching to a specific app id.
2616 *  The "command" field may also be set to a valid DICT_COMMAND object.
2617 *  The content of the "value" field is ignored.
2618 *
2619 * DISP_HOW_AVP_ENUMVAL.
2620 *  All fields have the same constraints and meaning as in DISP_REG_AVP. In addition, the "value" field must be set
2621 *  and points to a valid DICT_ENUMVAL object.
2622 *
2623 * Here is a sumary of the fields: ( M : must be set; m : may be set; 0 : ignored )
2624 *  field:     app_id    command     avp    value
2625 * APPID :       M          0         0       0
2626 * CC    :       m          M         0       0
2627 * AVP   :       m          m         M       0
2628 * ENUMVA:       m          m         M       M
2629 */
2630
2631enum disp_action {
2632        DISP_ACT_CONT,  /* The next handler should be called, unless *msg == NULL. */
2633        DISP_ACT_SEND,  /* The updated message must be sent. No further callback is called. */
2634        DISP_ACT_ERROR  /* An error must be created and sent as a reply -- not valid for callbacks, only for fd_msg_dispatch. */
2635};
2636/* The callbacks that are registered have the following prototype:
2637 *      int dispatch_callback( struct msg ** msg, struct avp * avp, struct session * session, enum disp_action * action );
2638 *
2639 * CALLBACK:    dispatch_callback
2640 *
2641 * PARAMETERS:
2642 *  msg         : the received message on function entry. may be updated to answer on return (see description)
2643 *  avp         : for callbacks registered with DISP_HOW_AVP or DISP_HOW_AVP_ENUMVAL, direct link to the triggering AVP.
2644 *  session     : if the message contains a Session-Id AVP, the corresponding session object, NULL otherwise.
2645 *  opaque      : An opaque pointer that is registered along the session handler.
2646 *  action      : upon return, this tells the daemon what to do next.
2647 *
2648 * DESCRIPTION:
2649 *   Called when a received message matchs the condition for which the callback was registered.
2650 * This callback may do any kind of processing on the message, including:
2651 *  - create an answer for a request.
2652 *  - proxy a request or message, add / remove the Proxy-Info AVP, then forward the message.
2653 *  - update a routing table or start a connection with a new peer, then forward the message.
2654 *  - ...
2655 *
2656 * When *action == DISP_ACT_SEND on callback return, the msg pointed by *msg is passed to the routing module for sending.
2657 * When *action == DISP_ACT_CONT, the next registered callback is called.
2658 *  When the last callback gives also DISP_ACT_CONT action value, a default handler is called. It's behavior is as follow:
2659 *   - if the message is an answer, it is discarded.
2660 *   - if the message is a request, it is passed again to the routing stack, and marked as non-local handling.
2661 *
2662 * RETURN VALUE:
2663 *  0           : The callback executed successfully and updated *action appropriately.
2664 *  !0          : standard errors. In case of error, the message is discarded.
2665 */
2666
2667/* This structure represents a handler for a registered callback, allowing its de-registration */
2668struct disp_hdl;
2669
2670/*
2671 * FUNCTION:    fd_disp_register
2672 *
2673 * PARAMETERS:
2674 *  cb            : The callback function to register (see dispatch_callback description above).
2675 *  how           : How the callback must be registered.
2676 *  when          : Values that must match, depending on the how argument.
2677 *  opaque        : A pointer that is passed back to the handler. The content is not interpreted by the framework.
2678 *  handle        : On success, a handler to the registered callback is stored here if not NULL.
2679 *                 This handler can be used to unregister the cb.
2680 *
2681 * DESCRIPTION:
2682 *   Register a new callback to handle messages delivered locally.
2683 *
2684 * RETURN VALUE:
2685 *  0           : The callback is registered.
2686 *  EINVAL      : A parameter is invalid.
2687 *  ENOMEM      : Not enough memory to complete the operation
2688 */
2689int fd_disp_register ( int (*cb)( struct msg **, struct avp *, struct session *, void *, enum disp_action *), 
2690                        enum disp_how how, struct disp_when * when, void * opaque, struct disp_hdl ** handle );
2691
2692/*
2693 * FUNCTION:    fd_disp_unregister
2694 *
2695 * PARAMETERS:
2696 *  handle       : Location of the handle of the callback that must be unregistered.
2697 *  opaque       : If not NULL, the opaque data that was registered is restored here.
2698 *
2699 * DESCRIPTION:
2700 *   Removes a callback previously registered by fd_disp_register.
2701 *
2702 * RETURN VALUE:
2703 *  0           : The callback is unregistered.
2704 *  EINVAL      : A parameter is invalid.
2705 */
2706int fd_disp_unregister ( struct disp_hdl ** handle, void ** opaque );
2707
2708/* Destroy all handlers */
2709void fd_disp_unregister_all ( void );
2710
2711/*
2712 * FUNCTION:    fd_msg_dispatch
2713 *
2714 * PARAMETERS:
2715 *  msg         : A msg object that have already been fd_msg_parse_dict.
2716 *  session     : The session corresponding to this object, if any.
2717 *  action      : Upon return, the action that must be taken on the message
2718 *  error_code  : Upon return with action == DISP_ACT_ERROR, contains the error (such as "DIAMETER_UNABLE_TO_COMPLY")
2719 *
2720 * DESCRIPTION:
2721 *   Call all handlers registered for a given message.
2722 *  The session must have already been resolved on entry.
2723 *  The msg pointed may be updated during this process.
2724 *  Upon return, the action parameter points to what must be done next.
2725 *
2726 * RETURN VALUE:
2727 *  0           : Success.
2728 *  EINVAL      : A parameter is invalid.
2729 *  (other errors)
2730 */
2731int fd_msg_dispatch ( struct msg ** msg, struct session * session, enum disp_action *action, char ** error_code );
2732
2733
2734
2735/*============================================================*/
2736/*                     QUEUES                                 */
2737/*============================================================*/
2738
2739/* Management of FIFO queues of elements */
2740
2741/* A queue is an opaque object */
2742struct fifo;
2743
2744/*
2745 * FUNCTION:    fd_fifo_new
2746 *
2747 * PARAMETERS:
2748 *  queue       : Upon success, a pointer to the new queue is saved here.
2749 *
2750 * DESCRIPTION:
2751 *  Create a new empty queue.
2752 *
2753 * RETURN VALUE :
2754 *  0           : The queue has been initialized successfully.
2755 *  EINVAL      : The parameter is invalid.
2756 *  ENOMEM      : Not enough memory to complete the creation. 
2757 */
2758int fd_fifo_new ( struct fifo ** queue );
2759
2760/*
2761 * FUNCTION:    fd_fifo_del
2762 *
2763 * PARAMETERS:
2764 *  queue       : Pointer to an empty queue to delete.
2765 *
2766 * DESCRIPTION:
2767 *  Destroys a queue. This is only possible if no thread is waiting for an element,
2768 * and the queue is empty.
2769 *
2770 * RETURN VALUE:
2771 *  0           : The queue has been destroyed successfully.
2772 *  EINVAL      : The parameter is invalid.
2773 */
2774int fd_fifo_del ( struct fifo  ** queue );
2775
2776/*
2777 * FUNCTION:    fd_fifo_move
2778 *
2779 * PARAMETERS:
2780 *  oldq        : Location of a FIFO that is to be emptied.
2781 *  newq        : A FIFO that will receive the old data.
2782 *  loc_update  : if non NULL, a place to store the pointer to new FIFO atomically with the move.
2783 *
2784 * DESCRIPTION:
2785 *  Empties a queue and move its content to another one atomically.
2786 *
2787 * RETURN VALUE:
2788 *  0           : The queue has been destroyed successfully.
2789 *  EINVAL      : A parameter is invalid.
2790 */
2791int fd_fifo_move ( struct fifo * oldq, struct fifo * newq, struct fifo ** loc_update );
2792
2793/*
2794 * FUNCTION:    fd_fifo_length
2795 *
2796 * PARAMETERS:
2797 *  queue       : The queue from which to retrieve the number of elements.
2798 *  length      : Upon success, the current number of elements in the queue is stored here.
2799 *
2800 * DESCRIPTION:
2801 *  Retrieve the number of elements in a queue.
2802 *
2803 * RETURN VALUE:
2804 *  0           : The length of the queue has been written.
2805 *  EINVAL      : A parameter is invalid.
2806 */
2807int fd_fifo_length ( struct fifo * queue, int * length );
2808int fd_fifo_length_noerr ( struct fifo * queue ); /* no error checking version */
2809
2810/*
2811 * FUNCTION:    fd_fifo_setthrhd
2812 *
2813 * PARAMETERS:
2814 *  queue       : The queue for which the thresholds are being set.
2815 *  data        : An opaque pointer that is passed to h_cb and l_cb callbacks.
2816 *  high        : The high-level threshold. If the number of elements in the queue increase to this value, h_cb is called.
2817 *  h_cb        : if not NULL, a callback to call when the queue lengh is bigger than "high".
2818 *  low         : The low-level threshold. Must be < high.
2819 *  l_cb        : If the number of elements decrease to low, this callback is called.
2820 *
2821 * DESCRIPTION:
2822 *  This function allows to adjust the number of producer / consumer threads of a queue.
2823 * If the consumer are slower than the producers, the number of elements in the queue increase.
2824 * By setting a "high" value, we allow a callback to be called when this number is too high.
2825 * The typical use would be to create an additional consumer thread in this callback.
2826 * If the queue continues to grow, the callback will be called again when the length is 2 * high, then 3*high, ... N * high
2827 * (the callback itself should implement a limit on the number of consumers that can be created)
2828 * When the queue starts to decrease, and the number of elements go under ((N - 1) * high + low, the l_cb callback is called
2829 * and would typially stop one of the consumer threads. If the queue continues to reduce, l_cb is again called at (N-2)*high + low,
2830 * and so on.
2831 *
2832 * Since there is no destructor for the data pointer, if cleanup operations are required, they should be performed in
2833 * l_cb when the length of the queue is becoming < low.
2834 *
2835 * Note that the callbacks are called synchronously, during fd_fifo_post or fd_fifo_get. Their operation should be quick.
2836 *
2837 * RETURN VALUE:
2838 *  0           : The thresholds have been set
2839 *  EINVAL      : A parameter is invalid.
2840 */
2841int fd_fifo_setthrhd ( struct fifo * queue, void * data, uint16_t high, void (*h_cb)(struct fifo *, void **), uint16_t low, void (*l_cb)(struct fifo *, void **) );
2842
2843/*
2844 * FUNCTION:    fd_fifo_post
2845 *
2846 * PARAMETERS:
2847 *  queue       : The queue in which the element must be posted.
2848 *  item        : The element that is put in the queue.
2849 *
2850 * DESCRIPTION:
2851 *  An element is added in a queue. Elements are retrieved from the queue in FIFO order
2852 *  with the fd_fifo_get, fd_fifo_tryget, or fd_fifo_timedget functions.
2853 *
2854 * RETURN VALUE:
2855 *  0           : The element is queued.
2856 *  EINVAL      : A parameter is invalid.
2857 *  ENOMEM      : Not enough memory to complete the operation.
2858 */
2859int fd_fifo_post_int ( struct fifo * queue, void ** item );
2860#define fd_fifo_post(queue, item) \
2861        fd_fifo_post_int((queue), (void *)(item))
2862
2863/*
2864 * FUNCTION:    fd_fifo_get
2865 *
2866 * PARAMETERS:
2867 *  queue       : The queue from which the first element must be retrieved.
2868 *  item        : On return, the first element of the queue is stored here.
2869 *
2870 * DESCRIPTION:
2871 *  This function retrieves the first element from a queue. If the queue is empty, the function will block the
2872 * thread until a new element is posted to the queue, or until the thread is canceled (in which case the
2873 * function does not return).
2874 *
2875 * RETURN VALUE:
2876 *  0           : A new element has been retrieved.
2877 *  EINVAL      : A parameter is invalid.
2878 */
2879int fd_fifo_get_int ( struct fifo * queue, void ** item );
2880#define fd_fifo_get(queue, item) \
2881        fd_fifo_get_int((queue), (void *)(item))
2882
2883/*
2884 * FUNCTION:    fd_fifo_tryget
2885 *
2886 * PARAMETERS:
2887 *  queue       : The queue from which the element must be retrieved.
2888 *  item        : On return, the first element of the queue is stored here.
2889 *
2890 * DESCRIPTION:
2891 *  This function is similar to fd_fifo_get, except that it will not block if
2892 * the queue is empty, but return EWOULDBLOCK instead.
2893 *
2894 * RETURN VALUE:
2895 *  0           : A new element has been retrieved.
2896 *  EINVAL      : A parameter is invalid.
2897 *  EWOULDBLOCK : The queue was empty.
2898 */
2899int fd_fifo_tryget_int ( struct fifo * queue, void ** item );
2900#define fd_fifo_tryget(queue, item) \
2901        fd_fifo_tryget_int((queue), (void *)(item))
2902
2903/*
2904 * FUNCTION:    fd_fifo_timedget
2905 *
2906 * PARAMETERS:
2907 *  queue       : The queue from which the element must be retrieved.
2908 *  item        : On return, the element is stored here.
2909 *  abstime     : the absolute time until which we allow waiting for an item.
2910 *
2911 * DESCRIPTION:
2912 *  This function is similar to fd_fifo_get, except that it will block if the queue is empty
2913 * only until the absolute time abstime (see pthread_cond_timedwait for + info).
2914 * If the queue is still empty when the time expires, the function returns ETIMEDOUT
2915 *
2916 * RETURN VALUE:
2917 *  0           : A new item has been retrieved.
2918 *  EINVAL      : A parameter is invalid.
2919 *  ETIMEDOUT   : The time out has passed and no item has been received.
2920 */
2921int fd_fifo_timedget_int ( struct fifo * queue, void ** item, const struct timespec *abstime );
2922#define fd_fifo_timedget(queue, item, abstime) \
2923        fd_fifo_timedget_int((queue), (void *)(item), (abstime))
2924
2925/* Dump a fifo list and optionally its inner elements -- beware of deadlocks! */
2926void fd_fifo_dump(int level, char * name, struct fifo * queue, void (*dump_item)(int level, void * item));
2927
2928#endif /* _LIBFDPROTO_H */
Note: See TracBrowser for help on using the repository browser.