view doc/dbg_interactive.py.sample @ 1562:6219359a36a9 default tip

Merge latest changes from proposed branch
author Sebastien Decugis <sdecugis@freediameter.net>
date Mon, 21 Jun 2021 19:08:18 +0800
parents e5010975da35
children
line wrap: on
line source

# Example file for the dbg_interactive.fdx extension.
#
# This extension provides an interactive python interpreter console that allows
# interacting with freeDiameter framework.
#
# The adaptation layer between Python and C is provided by SWIG (http://swig.org). 
# You may refer to SWIG documentation for more information on how the wrapper is generated and used.
# The name of the module wrapping freeDiameter framework is: _fDpy
#
# Similar to all freeDiameter extensions, an optional filename can be specified in the
# main freeDiameter.conf configuration file for the dbg_interactive.fdx extension.
# If such file is provided, it will be passed to the python interpreter as a python script
# to execute. Otherwise, the interpreter will be interactive.
#
# SWIG deals with structures as follow:
# Given the structure:
# struct foo { int a; }
# The following functions are available to python (their C equivalent processing is given in [ ]):
# s = new_foo()	   [ s = calloc(1, sizeof(struct foo)) ]
# foo_a_set(s, 2)  [ s->a = 2 ]
# foo_a_get(s)     [ returns s->a value ]
# delete_foo(s)    [ free(s)  ]
#
# In addition, thanks to the proxy (aka shadow) class, we can also do the more user-friendly:
# s = foo()
# s.a = 2
# s.a
# del s
#

# The remaining of this file gives some examples of how to use the python interpreter.
# Note that at the moment not 100% of the framework is usable. 
# You may have to extend some classes or write some typemaps in the source code 
# of the extension to do what you want.


############# Compilation-time constants (from freeDiameter-host.h) ############

# Display current version
print "%s %d.%d.%d" % (FD_PROJECT_NAME, FD_PROJECT_VERSION_MAJOR, FD_PROJECT_VERSION_MINOR, FD_PROJECT_VERSION_REV)


############# Debug ############

# Change the global debug level of the framework (cvar contains all global variables)
cvar.fd_g_debug_lvl = 1


# Turn on debug for a specific function (if framework compiled with DEBUG support)
cvar.fd_debug_one_function = "gc_th_fct"


# Print messages to freeDiameter's debug facility
# Note: the python version does not support printf-like argument list. The formating should be done in python.
#       See SWIG documentation about varargs functions for more information.
fd_log(FD_LOG_NOTICE, "3 + 4 = %d" % (7))


# Display some framework state information
conf = fd_conf_dump();
print conf;

fd_peer_dump_list(0)
fd_servers_dump(0)
fd_ext_dump(0)


############# Global variables ############

# Display the local Diameter Identity:
print "Local Diameter Identity:", cvar.fd_g_config.cnf_diamid

# Display realm, using the low-level functions (skip proxy classe definitions):
print "Realm:", _fDpy.fd_config_cnf_diamrlm_get(_fDpy.cvar.fd_g_config)



############# Lists ############

# Note: we use different names from the C API here, for usability.
l1 = fd_list()   # Will be our sentinel
l2 = fd_list()
l3 = fd_list()
l1.isempty()
l1.insert_next(l2)   # l1 -> l2
l1.isempty()
l1.insert_prev(l3)   # l1 -> l2 -> l3 (circular list)
l1.dump()
l3.detach()          # l1 -> l2
l4=fd_list()
l5=fd_list()
l3.insert_next(l4)   #   l3 -> l4
l3.insert_next(l5)   #   l3 -> l5 -> l4
l1.concat(l3)        # l1 -> l2 -> l5 -> l4

elements = l1.enum_as()  # default: enumerates as fd_list. Warning: this a copy, changing the python list has no effect on the underlying fd_list.
for li in elements:
  li.dump()

del elements
del l2
del l3
del l4
del l5
l1.isempty() # The destructor has an implicit fd_list_unlink call
del l1


############# Hash ############

hex(fd_os_hash("hello world"))	# It accepts binary data


############# Dictionary ############

##### Create a dedicated dictionary for our tests
d = dictionary()
d.dump()

# New vendor
v = dict_vendor_data()
v.vendor_id = 123
v.vendor_name = "My test vendor"
my_vendor = d.new_obj(DICT_VENDOR, v)
del v
d.dump()
d.vendors_list()

# Compact invocation also possible:
v2 = dict_vendor_data(124, "My test vendor 2")
del v2

# New application
a = dict_application_data()
a.application_id = 99
a.application_name = "My test appl"
my_appl = d.new_obj(DICT_APPLICATION, a, my_vendor)
del a

a2 = dict_application_data(99, "My test appl 2")
del a2

# New type (callbacks are not supported yet...)
t = dict_type_data()
t.type_base = AVP_TYPE_INTEGER32
t.type_name = "My integer AVP"
my_type_int = d.new_obj(DICT_TYPE, t, my_appl)
t.type_base = AVP_TYPE_OCTETSTRING
t.type_name = "My binary buffer AVP"
my_type_os = d.new_obj(DICT_TYPE, t, my_appl)
del t

t2 = dict_type_data(AVP_TYPE_UNSIGNED32, "u32 type")
del t2

# Constants
c = dict_enumval_data()
c.enum_name = "AVP_VALUE_TROIS"
c.enum_value.i32 = 3
d.new_obj(DICT_ENUMVAL, c, my_type_int)

c.enum_name = "A_BUFFER_CONSTANT"
c.enum_value.os = "This is a very long AVP value that we prefer to represent as a constant"
c.enum_value.os.dump()
d.new_obj(DICT_ENUMVAL, c, my_type_os)
del c

c2 = dict_enumval_data("enum 23", 23)  # The constructor only accepts unsigned32, for other values, set them afterwards
c3 = dict_enumval_data("enum other")
c3.os = "other value"
del c2
del c3

# AVP
a = dict_avp_data()
a.avp_code = 234
a.avp_name = "my integer avp"
a.avp_flag_mask = AVP_FLAG_MANDATORY
a.avp_basetype = AVP_TYPE_INTEGER32
my_avp_int = d.new_obj(DICT_AVP, a, my_type_int)

a.avp_vendor = 123
a.avp_name = "my OS avp"
a.avp_flag_mask = AVP_FLAG_MANDATORY + AVP_FLAG_VENDOR
a.avp_flag_val = AVP_FLAG_VENDOR
a.avp_basetype = AVP_TYPE_OCTETSTRING
my_avp_os = d.new_obj(DICT_AVP, a, my_type_os)
del a

a2 = dict_avp_data(235, "no vendor, not mandatory", AVP_TYPE_OCTETSTRING)
a3 = dict_avp_data(236, "vendor 12, not mandatory", AVP_TYPE_OCTETSTRING, 12)
a4 = dict_avp_data(237, "vendor 12, mandatory", AVP_TYPE_OCTETSTRING, 12, 1)
a5 = dict_avp_data(238, "no vendor, mandatory", AVP_TYPE_OCTETSTRING, 0, 1)
del a2
del a3
del a4
del a5


# Command
c = dict_cmd_data()
c.cmd_code = 345
c.cmd_name = "My-Python-Request"
c.cmd_flag_mask = CMD_FLAG_REQUEST + CMD_FLAG_PROXIABLE
c.cmd_flag_val = CMD_FLAG_REQUEST + CMD_FLAG_PROXIABLE
my_req = d.new_obj(DICT_COMMAND, c, my_appl)
c.cmd_name = "My-Python-Answer"
c.cmd_flag_val = CMD_FLAG_PROXIABLE
my_ans = d.new_obj(DICT_COMMAND, c, my_appl)
del c

c2 = dict_cmd_data(346, "Second-Request", 1) # Default created with PROXIABLE flag.
c3 = dict_cmd_data(346, "Second-Answer",  0) 
del c2
del c3

# Rule
r = dict_rule_data()
r.rule_avp = my_avp_int
r.rule_position = RULE_REQUIRED
r.rule_min = -1
r.rule_max = -1
d.new_obj(DICT_RULE, r, my_req)
d.new_obj(DICT_RULE, r, my_ans)
r.rule_avp = my_avp_os
d.new_obj(DICT_RULE, r, my_req)
d.new_obj(DICT_RULE, r, my_ans)
del r

r2 = dict_rule_data(my_avp_int, RULE_REQUIRED) # min & max are optional parameters, default to -1
r3 = dict_rule_data(my_avp_int, RULE_REQUIRED, 2, 3) # min is 2, max is 3
r4 = dict_rule_data(my_avp_int, RULE_FIXED_HEAD) # The r4.rule_order = 1 by default, change afterwards if needed.
del r2
del r3
del r4

d.dump()
del d

####### Now play with the "real" dictionary

gdict = cvar.fd_g_config.cnf_dict

appl = gdict.search ( DICT_APPLICATION, APPLICATION_BY_ID, 3 )
appl.dump()
avp = gdict.search ( DICT_AVP, AVP_BY_NAME, "Origin-Host")
avp.dump()
errcmd = gdict.error_cmd()

v = avp.getval()
print v.avp_code
del v

t = avp.gettype()
print t
del t

dict = avp.getdict()
del dict


############# Sessions ############

# handler
def my_cleanup(state,sid):
    print "Cleaning up python state for session:", sid
    print "Received state:", state
    del state

hdl = session_handler(my_cleanup)
hdl.dump()
del hdl

# Session
hdl = session_handler(my_cleanup)
s1 = session()
s1.getsid()
s2 = session("this.is.a.full.session.id")
r,s3,isnew = fd_sess_fromsid("this.is.a.full.session.id")  # use this call if "isnew" is really needed...
s4 = session("host.id", "optional.part")
s4.settimeout(30) # the python wrapper takes a number of seconds as parameter for simplicity
s4.dump()

# states
mystate = [ 34, "blah", [ 32, 12 ] ]
s1.store(hdl, mystate)
del mystate
gotstate = s1.retrieve(hdl)
print gotstate
del gotstate


############# Routing ############

rd = rt_data()

rd.add("p1.testbed.aaa", "testbed.aaa")
rd.add("p2.testbed.aaa", "testbed.aaa")
rd.add("p3.testbed.aaa", "testbed.aaa")
rd.add("p4.testbed.aaa", "testbed.aaa")

rd.remove("p2.testbed.aaa")

rd.error("p3.testbed.aaa", "relay.testbed.aaa", 3002)

list = rd.extract(-1)
for c in list.enum_as("struct rtd_candidate *"):
  print "%s (%s): %s" % (c.diamid, c.realm, c.score)

del rd


# A rt_fwd callback has the following prototype:
def my_rtfwd_cb(msg):
    print "Forwarding the following message:"
    msg.dump()
    return [ 0, msg ]  # return None instead of msg to stop forwarding.

fwdhdl = fd_rt_fwd_hdl( my_rtfwd_cb, RT_FWD_REQ )


# A rt_out cb has the following prototype:
def my_rtout_cb(msg, list):
    print "Sending out the following message:"
    msg.dump()
    print "The possible candidates are:"
    for c in list.enum_as("struct rtd_candidate *"):
       print "%s (%s): %s" % (c.diamid, c.realm, c.score)
    return 0   # returns an error code (standard errno values)

outhdl = fd_rt_out_hdl( my_rtout_cb )  # a priority can be specified as 2nd parameter, default is 0.





############# Messages, AVPs ############

## AVP

# Create empty
blank_avp = avp()
del blank_avp

# Create from dictionary definitions
oh = avp(cvar.fd_g_config.cnf_dict.search ( DICT_AVP, AVP_BY_NAME, "Origin-Host"))	                # Octet String
vi = avp(cvar.fd_g_config.cnf_dict.search ( DICT_AVP, AVP_BY_NAME, "Vendor-Id"))                        # U32
vsai = avp(cvar.fd_g_config.cnf_dict.search ( DICT_AVP, AVP_BY_NAME, "Vendor-Specific-Application-Id")) # Grouped

# Set values
val = avp_value()
val.u32 = 123
vi.setval(None)  # this cleans a previous value (usually not needed)
vi.setval(val)
val.os = "my.origin.host"
oh.setval(val)
vsai.add_child(vi) # call as add_child(vi, 1) to add the new AVP at the beginning, default is at the end

# It is possible to initialize the AVP with a blank value as follow:
blank_with_value = avp(None, AVPFL_SET_BLANK_VALUE)
# it enables this without doing the setval call:
blank_with_value.header().avp_value.u32 = 12


## Messages

# Create empt (as for avps, pass None or a dictionary object as 1st param, and flags as optional 2nd param)y
a_msg = msg()
a_msg.dump()
del a_msg

# It is also possible to pass MSGFL_* flags in second parameter (ALLOC_ETEID is default)
msg_no_eid = msg(None, 0)
msg_no_eid.dump()
del msg_no_eid

# Create from dictionary
dwr_dict = cvar.fd_g_config.cnf_dict.search ( DICT_COMMAND, CMD_BY_NAME, "Device-Watchdog-Request" )
dwr = msg(dwr_dict)
dwr.dump()

# Create msg from a binary buffer (then you should call parse_dict and parse_rules methods)
dwr2 = msg("\x01\x00\x00\x14\x80\x00\x01\x18\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xf0\x00\x01")

# Create answer from request (optional parameters: dictionary to use, and flags):
dwr3 = msg(cvar.fd_g_config.cnf_dict.search ( DICT_COMMAND, CMD_BY_NAME, "Device-Watchdog-Request" ))
dwa3 = dwr3.create_answer()
dwr3cpy = dwa3.get_query()


## Other functions with AVPs & messages

# Add the AVPs in the message
dwr.add_child(oh)
oh.add_next(vsai)   # equivalent to add_child on the parent

# Create a network byte buffer from the message
dwr.bufferize()

# Get first child AVP (fast)
avp = dwr.first_child()

# then:
avp = avp.get_next() # when last AVP, returns None


# Get all 1st level children (slower) -- warning, changes to the python list will not be reflected on the underlying message. read-only use.
dwr.children()
# example use:
for a in dwr.children():
  a.dump(0)  # 0 means: dump only this object, do not walk the tree


# Search the first AVP of a given type
oh_dict = cvar.fd_g_config.cnf_dict.search( DICT_AVP, AVP_BY_NAME, "Origin-Host")
oh = dwr.search( oh_dict )

# After adding AVPs, the length in the message header is outdated, refresh as follow:
dwr.update_length()

# Get dictionary model for a message or avp
dwr.model()
oh.model().dump()

# Retrieve the header of messages & avp:
dwr_hdr = dwr.header()
dwr_hdr.msg_version
dwr_hdr.msg_hbhid

oh_hdr = oh.header()
hex(oh_hdr.avp_flags)
oh_hdr.avp_vendor
oh_hdr.avp_value.os.as_str() 


# Get or set the routing data
rd = rt_data()
dwr.set_rtd(rd)
rd = dwr.get_rtd()

# Test if message is routable
dwr.is_routable()

# Which peer the message was received from (when received from network)
dwr.source()

# The session corresponding to this message (returns None when no Session-Id AVP is included)
dwr.get_session()


# Parse a buffer
buf = "\x01\x00\x00@\x80\x00\x01\x18\x00\x00\x00\x00\x00\x00\x00\x00N\x10\x00\x00\x00\x00\x01\x08@\x00\x00\x16my.origin.host\x00\x00\x00\x00\x01\x04@\x00\x00\x14\x00\x00\x01\n@\x00\x00\x0c\x00\x00\x00{"
mydwr = msg(buf)
# Resolve objects in the dictionary. Return value is None or a struct pei_error in case of problem.
mydwr.parse_dict()  # if not using the fD global dict, pass it as parameter
err = mydwr.parse_rules()
err.pei_errcode


# Grouped AVPs are browsed with same methods as messages:
gavp = dwr.children()[1]
gavp.first_child().dump()
gavp.children()


# Send a message:
mydwr = msg(buf)
mydwr.send()

# Optionally, a callback can be registered when a request is sent, with an optional object.
# This callback takes the answer message as parameter and should return None or a message. (cf. fd_msg_send)
def send_callback(msg, obj):
    print "Received answer:"
    msg.dump()
    print "Associated data:"
    obj
    return None

mydwr = msg(buf)
mydwr.send(send_callback, some_object)

# Again optionally, a time limit can be specified in this case as follow:
mydwr.send(send_callback, some_object, 10)
# In that case, if no answer / error is received after 10 seconds (the value specified), 
# the callback is called with the request as parameter.
# Testing for timeout case is done by using msg.is_request()
def send_callback(msg, obj):
    if (msg.is_request()):
        print "Request timed out without answer:"
    else:
        print "Received answer:"
    msg.dump()
    print "Associated data:"
    obj
    return None


# Set a result code in an answer message.
mydwr = msg(buf)
dwa = mydwr.create_answer()
dwa.rescode_set()   # This adds the DIAMETER_SUCCESS result code
dwa.rescode_set("DIAMETER_LIMITED_SUCCESS" )   # This adds a different result code
dwa.rescode_set("DIAMETER_LIMITED_SUCCESS", "Something went not so well" )   # This adds a different result code + specified Error-Message
dwa.rescode_set("DIAMETER_INVALID_AVP", None, faulty_avp )   # This adds a Failed-AVP
dwa.rescode_set("DIAMETER_SUCCESS", None, None, 1 )   # This adds origin information (see fd_msg_rescode_set's type_id for more info)

# Set the origin to local host
mydwr.add_origin()  # adds Origin-Host & Origin-Realm
mydwr.add_origin(1) # adds Origin-State-Id in addition.


############# DISPATCH (aka. server application) ############

# As for sessions, only one dispatch handler can be registered in this extension at the moment.
# The callback for the handler has the following syntax:
def dispatch_cb_model(inmsg, inavp, insession):
   print "Callback trigged on message: "
   inmsg.dump()
   # inavp is None or the AVP that trigged the callback, depending on how it was registered.
   if inavp:
     print "From the following AVP:"
     inavp.dump()
   else:
     print "No AVP"
   # Session is provided only if a Session-Id is in the message
   if insession:
     print "The session is: ", insession.getsid()
   else:
     print "No session"
   # Now, for the return value.
   # This callback must return 3 elements:
   # - an integer which is interpreted as an error code (errno.h)
   # - a message or None, depending on the next item
   # - an enum disp_action value, with the same meaning as in C (see libfreeDiameter.h)
   del inmsg
   return [ 0, None, DISP_ACT_CONT ]


### Example use: rebuild the server-side of test_app.fdx in python

# The following block defines the dictionary objects from the test_app.fdx application that we use on the remote peer
gdict = cvar.fd_g_config.cnf_dict
d_si = gdict.search ( DICT_AVP, AVP_BY_NAME, "Session-Id" )
d_oh  = gdict.search ( DICT_AVP, AVP_BY_NAME, "Origin-Host" )
d_or  = gdict.search ( DICT_AVP, AVP_BY_NAME, "Origin-Realm" )
d_dh  = gdict.search ( DICT_AVP, AVP_BY_NAME, "Destination-Host" )
d_dr  = gdict.search ( DICT_AVP, AVP_BY_NAME, "Destination-Realm" )
d_rc  = gdict.search ( DICT_AVP, AVP_BY_NAME, "Result-Code" )
d_vnd = gdict.new_obj(DICT_VENDOR, 	dict_vendor_data(999999, 	"app_test_py vendor") )
d_app = gdict.new_obj(DICT_APPLICATION, dict_application_data(0xffffff, "app_test_py appli"), d_vnd)
d_req = gdict.new_obj(DICT_COMMAND, 	dict_cmd_data(0xfffffe, "Test_py-Request", 1), d_app)
d_ans = gdict.new_obj(DICT_COMMAND, 	dict_cmd_data(0xfffffe, "Test_py-Answer",  0), d_app)
d_avp = gdict.new_obj(DICT_AVP, 	dict_avp_data(0xffffff, "app_test_py avp", AVP_TYPE_INTEGER32, 999999 ))
gdict.new_obj(DICT_RULE, dict_rule_data(d_si, RULE_FIXED_HEAD, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_si, RULE_FIXED_HEAD, 1, 1), d_ans)
gdict.new_obj(DICT_RULE, dict_rule_data(d_avp, RULE_REQUIRED, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_avp, RULE_REQUIRED, 1, 1), d_ans)
gdict.new_obj(DICT_RULE, dict_rule_data(d_oh, RULE_REQUIRED, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_oh, RULE_REQUIRED, 1, 1), d_ans)
gdict.new_obj(DICT_RULE, dict_rule_data(d_or, RULE_REQUIRED, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_or, RULE_REQUIRED, 1, 1), d_ans)
gdict.new_obj(DICT_RULE, dict_rule_data(d_dr, RULE_REQUIRED, 1, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_dh, RULE_OPTIONAL, 0, 1), d_req)
gdict.new_obj(DICT_RULE, dict_rule_data(d_rc, RULE_REQUIRED, 1, 1), d_ans)

# Now, create the Test_app server callback:
def test_app_cb(inmsg, inavp, insession):
   tval = inmsg.search(d_avp).header().avp_value.u32
   print "Py ECHO Test message from '%s' with test value %x, replying..." % (inmsg.search(d_oh).header().avp_value.os.as_str(), tval)
   answ = inmsg.create_answer()
   answ.rescode_set()
   answ.add_origin()
   ta = avp(d_avp, AVPFL_SET_BLANK_VALUE)
   ta.header().avp_value.u32 = tval
   answ.add_child(ta)
   return [ 0, answ, DISP_ACT_SEND ]

# Register the callback for dispatch thread:
hdl = disp_hdl(test_app_cb, DISP_HOW_CC, disp_when(d_app, d_req))  # disp_when() takes 0 to 4 arguments as follow: (app=NULL, cmd=NULL, avp=NULL, val=NULL)

# Don't forget to register the application in the daemon for CER/CEA capabilities.
fd_disp_app_support ( d_app, d_vnd, 1, 0 )


###  For the fun, the client part of the test_app:

def receive_answer(ans, testval):
   try:
     tval = ans.search(d_avp).header().avp_value.u32
   except:
     print "Error in receive_answer: no Test-AVP included"
     tval = 0
   try:
     print "Py RECV %x (expected: %x) Status: %d From: '%s'" % (tval, testval, ans.search(d_rc).header().avp_value.u32, ans.search(d_oh).header().avp_value.os.as_str())
   except:
     print "Error in receive_answer: Result-Code or Origin-Host are missing"
   del ans
   return None

import random

def send_query(destrealm="localdomain"):
   qry = msg(d_req)
   sess = session()
   tv = random.randint(1, 1<<32)
   # Session-Id
   a = avp(d_si, AVPFL_SET_BLANK_VALUE)
   a.header().avp_value.os = sess.getsid()
   qry.add_child(a)
   # Destination-Realm
   a = avp(d_dr, AVPFL_SET_BLANK_VALUE)
   a.header().avp_value.os = destrealm
   qry.add_child(a)
   # Origin-Host, Origin-Realm
   qry.add_origin()
   # Test-AVP
   a = avp(d_avp, AVPFL_SET_BLANK_VALUE)
   a.header().avp_value.u32 = tv
   qry.add_child(a)
   print "Py SEND %x to '%s'" % (tv, destrealm)
   qry.send(receive_answer, tv)

send_query()


############# FIFO queues ############

myqueue = fifo()

# enqueue any object
myqueue.post(3)
myqueue.post("blah")
myqueue.post( [ 3, 2 ] )

# Simple get (blocks when the queue is empty)
myqueue.get()

# Try get: returns the next object, or None if the queue is empty
myqueue.tryget()

# timed get: like get, but returns None after x seconds
myqueue.timedget(3)

# Show the number of items in the queue
myqueue.length()


## Variants:
# All the previous calls are suitable to queue Python objects.
# In order to interact with objects queued / poped by C counterpart,
# a second parameter must be passed to specify the object type,
# as follow:
ev = fd_event()
ev.code = FDEV_DUMP_EXT
cvar.fd_g_config.cnf_main_ev.post(ev, "struct fd_event *")

# Similarly, for *get, we can specify the structure that was queued:
myqueue.get("struct fd_event *")
myqueue.tryget("struct fd_event *")
myqueue.timedget(3, "struct fd_event *")

del myqueue


############# HOOKS ############

def my_hook_cb(type, msg, peer, other, oldpmd):
    print "callback type ", type, " called: ", msg, other, oldpmd
    return "this is the new pmd"

# Create a wrapped fd_hook_data_hdl:
datahdl = fd_hook_data_hdl()

# Register the hook callback:
hdl = fd_hook_hdl(1 << HOOK_MESSAGE_SENT, my_hook_cb, datahdl)




############# PEERS ############

# Get the list of peers defined in the system 
# (we are supposed to readlock fd_g_peers_rw before accessing this list)
cvar.fd_g_peers_rw.rdlock()
peers = cvar.fd_g_peers.enum_as("struct peer_hdr *")
cvar.fd_g_peers_rw.unlock()
for p in peers:
   print "Peer:", p.info.pi_diamid


# Create a new peer
np = peer_info()
np.pi_diamid = "nas.localdomain"
np.config.pic_flags.pro4 = PI_P4_TCP


# Add this peer into the framework.
np.add()

# It is possible to specify a callback for when the connection completes or fails with this peer.
# The prototype is as follow:
def add_cb(peer):
    if peer:
        if peer.runtime.pir_state == STATE_OPEN:
	   print "Connection to peer '%s' completed" % (peer.pi_diamid)
	   # can find more information in peer.runtime.*
	else:
	   print "Connection to peer '%s' failed (state:%d)" % (peer.pi_diamid, peer.runtime.pir_state)
    else:
        print "The peer has been destroyed before it completed the connection."

# Then add the peer like this:
np.add(add_cb)


# Search a peer by its diameter id (returns a peer_hdr object if found) -- similar to fd_peer_getbyid
p = peer_search("nas.domain.aaa")


## Validation callback (see fd_peer_validate_register documentation)

# cb2 prototype:
def my_validate_cb2(pinfo):
    print "Cb2 callback trigged for peer %s" % (pinfo.pi_diamid)
    # Usually, this would be used only to check some TLS properties, 
    # which is not really possible yet through the python interpreter...
    return 0   # return an error code if the peer is not validated

# cb prototype:
def my_validate_cb(pinfo):
    print "Validate callback trigged for peer %s" % (pinfo.pi_diamid)
    # If the peer is not allowed to connect:
    #return -1
    # If the peer is authorized:
    #return 1
    # In addition, if IPsec is allowed,
    #pinfo.config.pic_flags.sec = PI_SEC_NONE
    # If no decision has been made:
    #return 0
    # If the peer is temporarily authorized but a second callback must be called after TLS negociation:
    return my_validate_cb2

# Register the callback, it will be called on new incoming connections.
peer_validate_register(my_validate_cb)



############# ENDPOINTS ############

ep = fd_endpoint("129.168.168.192")

# with port:
ep = fd_endpoint("129.168.168.192", 3868)

# With different flags:
ep = fd_endpoint("129.168.168.192", 3868, EP_FL_PRIMARY)

# Add IP information for the peer
np = peer_info()
ep.add_merge(np.pi_endpoints)
fd_ep_dump(0, np.pi_endpoints)



############# POSIX functions wrappers ############

# The interface also provides wrappers around base POSIX 
# synchronization functions:

m = pthread_mutex_t()
m.lock()
m.unlock()

c = pthread_cond_t()
c.signal()
c.broadcast()
c.wait(m)
c.timedwait(m, 5)  # it takes a relative time

r = pthread_rwlock_t()
r.rdlock()
r.unlock()
r.wrlock()
"Welcome to our mercurial repository"